A055512 Lattices with n labeled elements.
1, 1, 2, 6, 36, 380, 6390, 157962, 5396888, 243179064, 13938711210, 987858368750, 84613071940452, 8597251494954564, 1020353444641839854, 139627532137612581090, 21788453795572514675760, 3840596246648027262079472, 758435490711709577216754642
Offset: 0
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..19 (terms 0..18 from David Wasserman)
- J. Heitzig and J. Reinhold, Counting finite lattices, preprint no. 298, Institut für Mathematik, Universität Hanover, Germany, 1999.
- Sean A. Irvine, Java program (github).
- J. Heitzig and J. Reinhold, Counting finite lattices, Algebra univers. 48, 43-53 (2002).
- D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, in: Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978), Ann. Discrete Math. 6 (1980), 243-249.
- Alan Veliz-Cuba and Reinhard Laubenbacher, Dynamics of semilattice networks with strongly connected dependency graph, Automatica (2019) Vol. 99, 167-174.
- Index entries for "core" sequences