cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173488 Partial sums of A055512.

Original entry on oeis.org

1, 2, 4, 10, 46, 426, 6816, 164778, 5561666, 248740730, 14187451940, 1002045820690, 85615117761142, 8682866612715706, 1029036311254555560, 140656568448867136650, 21929110364021381812410, 3862525357012048643891882, 762298016068721625860646524
Offset: 0

Views

Author

Jonathan Vos Post, Feb 19 2010

Keywords

Comments

Partial sums of the number of lattices with n labeled elements. After a(0) = 1, always even, hence the only prime in the partial sum is 2. The subsequence of semiprimes begins 4, 10, 46.

Crossrefs

Cf. A055512, A006966, A001035, Main diagonal of A058159.

Programs

Formula

a(n) = Sum_{i=0..n} A055512(i).

Extensions

a(17)-a(18) from Jean-François Alcover, Jan 02 2020

A006966 Number of lattices on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 15, 53, 222, 1078, 5994, 37622, 262776, 2018305, 16873364, 152233518, 1471613387, 15150569446, 165269824761, 1901910625578, 23003059864006
Offset: 0

Views

Author

Keywords

Comments

Also commutative idempotent monoids. Also commutative idempotent semigroups of order n-1.
Commutative idempotent semigroups are also called semilattices, so A(n) counts semilattices of order n-1. - Dennis Sweeney, Jul 19 2024

References

  • J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.
  • P. D. Lincoln, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. R. Stembridge, personal communication.

Crossrefs

Cf. A006981, A006982, A055512. Main diagonal of A058142. a(n+1) is main diagonal of A058116.

Extensions

More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(19) from Nathan Lawless, Sep 15 2013
a(20) from Volker Gebhardt, Sep 28 2016

A058159 Triangle read by rows: T(n,k) is the number of labeled commutative monoids of order n with k idempotents.

Original entry on oeis.org

1, 2, 2, 3, 18, 6, 16, 180, 144, 36, 30, 2040, 3240, 1740, 380, 360, 43170, 81000, 70740, 31680, 6390, 840, 1400112, 2589510, 2976960, 2055480, 832230, 157962, 15360, 110488616, 117733728, 144285960, 130781280, 79626120, 30004128, 5396888, 68040, 30647444544, 9223088112, 8744866704, 8997002280, 7154708400, 4005012816, 1421659512, 243179064
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Examples

			Triangle begins:
    1;
    2,     2;
    3,    18,     6;
   16,   180,   144,    36;
   30,  2040,  3240,  1740,   380;
  360, 43170, 81000, 70740, 31680, 6390;
  ...
		

Crossrefs

Row sums give A058155.
Column 1: A034382.
Main diagonal: A055512.
Cf. A058142 (isomorphism classes), A058157, A058160.

Formula

T(n, k) = A058160(n, k)*n.

Extensions

Terms a(30) and beyond from Andrew Howroyd, Feb 15 2022

A058164 Number of labeled lattices with a fixed bottom.

Original entry on oeis.org

1, 1, 2, 9, 76, 1065, 22566, 674611, 27019896, 1393871121, 89805306250, 7051089328371, 661327038073428, 72882388902988561, 9308502142507505406, 1361778362223282167235, 225917426273413368357616, 42135305039539420956486369, 8768279861975723002123310226
Offset: 1

Views

Author

Christian G. Bower, Nov 15 2000

Keywords

Crossrefs

Main diagonal of A058160.

Programs

Formula

a(n) = A055512(n)/n = A058165(n)*(n-1).

Extensions

a(18) from Jean-François Alcover, Jan 02 2020
a(19) from the data at A055512 added by Amiram Eldar, Jul 22 2025

A058165 Number of labeled lattices with a fixed bottom and top.

Original entry on oeis.org

1, 1, 3, 19, 213, 3761, 96373, 3377487, 154874569, 8980530625, 641008120761, 55110586506119, 5606337607922197, 664893010179107529, 90785224148218811149, 14119839142088335522351, 2478547355267024762146257
Offset: 2

Views

Author

Christian G. Bower, Nov 15 2000

Keywords

Crossrefs

Programs

Formula

a(n) = A055512(n)/(n*(n-1)) = A058164(n)/(n-1).

Extensions

a(18) from Jean-François Alcover, Jan 02 2020
Showing 1-5 of 5 results.