A099085 A bisection of A006966.
1, 1, 2, 15, 222, 5994, 262776, 16873364, 1471613387, 165269824761
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
assign(max_models,-1). assign(domain_size,4). formulas(assumptions). % Comment: This will find all quantales on 4 elements, fixing % 0 as the bottom and 3 as the top. Elements will be numbered % 0-3. Results *must* be run through the companion program % isofilter that is included with the downloads for mace4, % otherwise the output will contain isomorphic duplicates! % By changing the domain size, this file should be sufficient % for up to 6 elements, but will crash for higher numbers. (x*y)*z = x*(y*z). (x v y) v z = x v (y v z). x v y = y v x. x v x = x. x*(y v z) = (x*y) v (x*z). (x v y)*z = (x*z) v (y*z). 0*x = 0. x*0 = 0. 0 v x = x. 3 v x = 3. end_of_list. formulas(goals). end_of_list.
From _Jukka Kohonen_, Mar 06 2021: (Start) a(5)=4: These are the four lattices. o o o o | | / \ /|\ o o o o o o o | / \ \ / \|/ o o o o o | \ / | o o o | o (End)
Triangle begins: 1; 2, 1; 5, 5, 2; 16, 23, 14, 5; 62, 106, 93, 49, 15; ...
Triangle begins: 1; 1, 1; 1, 3, 1; 2, 9, 6, 2; 1, 26, 30, 16, 5; 1, 98, 142, 111, 54, 15; ...
V=concat(digits(1101010214296),[21,18,48,50,114,135,277,358,681]); P=List(1); for(n=2,#V,listput(P,V[2..n]*Colrev(P))); A343161=Vec(P) \\ M. F. Hasler, Jun 22 2021, using V[1..22] & formula from Bianca Newell
\\ Needs S, V defined in A345734. seq(n)={Vec(x/(1 - x - Ser((S(n)+V(n))/2)))} \\ Andrew Howroyd, Jan 24 2023
v=[1,1,1,0,1,0,1,0,2,1,4,2,9,6,21,18,48,50,114,135,277,358,681] p=[1,1,1] for n in range(3,23): p=p+[sum(v[k]*p[n-k+1] for k in range(2,n+1))] p # Bianca Newell, Jun 22 2021
A006966 = Cases[Import["https://oeis.org/A006966/b006966.txt", "Table"], {, }][[All, 2]]; nmax = Length[A006966] - 1; B[x_] = Sum[A006966[[n + 1]] x^n, {n, 0, nmax}]; A[x_] = Sum[c[n] x^n, {n, 0, nmax}]; sol = CoefficientList[1 + A[x] - 1/(1 - B[x]) + O[x]^nmax, x] == 0 // Solve // First // Rest // Quiet; a[n_] := If[n <= 2, 1, c[n - 2] /. sol]; a /@ Range[0, nmax] (* Jean-François Alcover, Dec 05 2019 *)
Comments