cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006966 Number of lattices on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 15, 53, 222, 1078, 5994, 37622, 262776, 2018305, 16873364, 152233518, 1471613387, 15150569446, 165269824761, 1901910625578, 23003059864006
Offset: 0

Views

Author

Keywords

Comments

Also commutative idempotent monoids. Also commutative idempotent semigroups of order n-1.
Commutative idempotent semigroups are also called semilattices, so A(n) counts semilattices of order n-1. - Dennis Sweeney, Jul 19 2024

References

  • J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.
  • P. D. Lincoln, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. R. Stembridge, personal communication.

Crossrefs

Cf. A006981, A006982, A055512. Main diagonal of A058142. a(n+1) is main diagonal of A058116.

Extensions

More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(19) from Nathan Lawless, Sep 15 2013
a(20) from Volker Gebhardt, Sep 28 2016

A006981 a(n) is the number of unlabeled modular lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 34, 72, 157, 343, 766, 1718, 3899, 8898, 20475, 47321, 110024, 256791, 601991, 1415768, 3340847, 7904700, 18752943, 44588803, 106247120, 253644319, 606603025, 1453029516, 3485707007, 8373273835, 20139498217, 48496079939, 116905715114, 282098869730
Offset: 0

Views

Author

Keywords

Examples

			From _Jukka Kohonen_, Mar 06 2021: (Start)
a(5)=4: These are the four lattices.
  o     o       o        o
  |     |      / \      /|\
  o     o     o   o    o o o
  |    / \     \ /      \|/
  o   o   o     o        o
  |    \ /      |
  o     o       o
  |
  o
(End)
		

References

  • P. D. Lincoln, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006966 (lattices), A006982 (distributive), A342132 (modular vertically indecomposable).

Extensions

More terms from Nathan Lawless, Sep 15 2013
Corrected a(24) and added a(25)-a(30) by Jukka Kohonen, Aug 15 2017
a(31)-a(32) from Jukka Kohonen, Sep 23 2018
Name clarified by Jukka Kohonen, Sep 23 2018
a(33) from Jukka Kohonen, Sep 26 2018
a(34)-a(35) from Jukka Kohonen, Mar 06 2021

A343161 Number of planar distributive lattices with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 14, 24, 42, 72, 127, 221, 390, 684, 1207, 2125, 3753, 6620, 11698, 20659, 36518, 64533, 114099, 201707, 356683, 630693, 1115370, 1972469, 3488489, 6169656, 10912003, 19299555, 34135099, 60374747, 106786342, 188875933, 334072759, 590889162, 1045136443
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2021, following a suggestion from Allan C. Wechsler

Keywords

Crossrefs

Programs

  • PARI
    V=concat(digits(1101010214296),[21,18,48,50,114,135,277,358,681]); P=List(1); for(n=2,#V,listput(P,V[2..n]*Colrev(P))); A343161=Vec(P) \\ M. F. Hasler, Jun 22 2021, using V[1..22] & formula from Bianca Newell
    
  • PARI
    \\ Needs S, V defined in A345734.
    seq(n)={Vec(x/(1 - x - Ser((S(n)+V(n))/2)))} \\ Andrew Howroyd, Jan 24 2023
  • Python
    v=[1,1,1,0,1,0,1,0,2,1,4,2,9,6,21,18,48,50,114,135,277,358,681]
    p=[1,1,1]
    for n in range(3,23):
        p=p+[sum(v[k]*p[n-k+1] for k in range(2,n+1))]
    p # Bianca Newell, Jun 22 2021
    

Formula

a(n) = Sum_{k=2..n} V(k)*a(n-k+1), where V(k) is the number of planar vertically indecomposable distributive lattices of size k. - Bianca Newell, Jun 22 2021
G.f.: x/(2 - B(x)/x) where B(x) is the g.f of A345734. - Andrew Howroyd, Jan 24 2023

Extensions

a(16)-a(22), computed with Python code, from Bianca Newell, Jun 22 2021
Terms a(23) and beyond from Andrew Howroyd, Jan 24 2023

A072361 Number of vertically indecomposable distributive lattices on n nodes.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 3, 1, 6, 2, 16, 8, 42, 28, 112, 93, 311, 295, 869, 939, 2454, 2931, 7032, 9036, 20301, 27701, 58929, 84413, 172104, 255919, 504637, 773511, 1484392, 2331180, 4378773, 7009288, 12944347, 21039961, 38328890, 63067623, 113651785, 188831922, 337361112, 564890985, 1002268019, 1688673026, 2979703035, 5045200597
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2002

Keywords

Crossrefs

Extensions

Word "distributive" added to the Name by Peter Jipsen, Mar 05 2013

A072407 Canonically 2-indecomposable posets with n antichains.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 2, 1, 1, 0, 7, 5, 16, 14, 40, 41, 120, 131, 321, 402, 901, 1210, 2590, 3621, 7371, 10841, 21178, 32222, 61273, 95408, 177384, 282405, 515174, 833295, 1500030, 2455337, 4372535, 7229231, 12761691, 21260746, 37286778, 62483221, 109014426, 183542099, 318906720, 538889399, 933361886, 1581666042
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2002

Keywords

Crossrefs

A377408 Number of unlabeled semidistributive lattices with n elements.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 60, 174, 534, 1720, 5767, 20013, 71546
Offset: 1

Views

Author

Ludovic Schwob, Oct 27 2024

Keywords

Comments

The smallest semidistributive lattice that is not congruence-uniform has 14 elements.

Crossrefs

Cf. A006982 (distributive lattices), A292790 (congruence-uniform lattices).

A186808 Numbers n such that there are a prime number of unlabeled distributive lattices with n elements.

Original entry on oeis.org

4, 5, 6, 10, 12, 13, 18, 21, 23, 26
Offset: 1

Views

Author

Jonathan Vos Post, Feb 26 2011

Keywords

Comments

A lattice which satisfies the identities:
(x^y)V(x^z) = x^(yVz);
(xVy)^(xVz) = xV(y^z)
is said to be distributive.

Examples

			a(10) = 26 because there are 711811 unlabeled distributive lattices with 26 elements, and 711811 is a prime number.
		

References

  • Gratzer, G. Lattice Theory: First Concepts and Distributive Lattices. San Francisco, CA: W. H. Freeman, pp. 35-36, 1971.

Crossrefs

Formula

{k: A006982(k) is in A000040}.

A377409 Number of unlabeled join-semidistributive lattices with n elements.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 23, 65, 197, 636, 2171, 7756, 28822, 110805
Offset: 1

Views

Author

Ludovic Schwob, Oct 27 2024

Keywords

Comments

Equivalently, a(n) is the number of meet-semidistributive lattices with n elements.
The smallest join-semidistributive lattice that is not meet-semidistributive has 7 elements.

Crossrefs

Cf. A377408 (semidistributive lattices), A006982 (distributive lattices).

A382829 Number of distinct rank vectors of distributive lattices of height n.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 197, 864, 4325, 24922
Offset: 0

Views

Author

Ludovic Schwob, Apr 06 2025

Keywords

Comments

Distributive lattices are ranked posets, and we define the rank vector of a ranked poset P as the vector whose k-th coordinate (starting at k = 0) is the number of elements of rank k in P.
By Birkhoff's representation theorem, elements of a finite distributive lattice L are in bijection with lower sets of the poset of join-irreducible elements of L, an element of rank k corresponding to a lower of set size k.

Examples

			The rank vectors corresponding to a(4) = 15 are:
  (1, 1, 1, 1, 1),   (1, 1, 1, 2, 1),   (1, 1, 2, 1, 1),
  (1, 1, 2, 2, 1),   (1, 1, 3, 3, 1),   (1, 2, 1, 1, 1),
  (1, 2, 1, 2, 1),   (1, 2, 2, 1, 1),   (1, 2, 2, 2, 1),
  (1, 2, 3, 2, 1),   (1, 2, 3, 3, 1),   (1, 3, 3, 1, 1),
  (1, 3, 3, 2, 1),   (1, 3, 4, 3, 1),   (1, 4, 6, 4, 1).
Two non-isomorphic distributive lattices have for rank vector (1, 2, 2, 2, 1).
		

Crossrefs

Showing 1-9 of 9 results.