cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bianca Newell

Bianca Newell's wiki page.

Bianca Newell has authored 2 sequences.

A346413 Number of labeled totally ordered monoids with n elements.

Original entry on oeis.org

1, 2, 8, 34, 184, 1218, 9742, 92882, 1053248, 14592054
Offset: 1

Author

Bianca Newell, Jul 15 2021

Keywords

Comments

The terms have been computed using the algorithm described in the referenced paper.

Crossrefs

Cf. A058153.

A345734 Number of planar vertically indecomposable distributive lattices with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 1, 4, 2, 9, 6, 21, 18, 48, 50, 114, 135, 277, 358, 681, 935, 1693, 2425, 4235, 6258, 10643, 16085, 26852, 41226, 67921, 105456, 172125, 269375, 436785, 687409, 1109411, 1752966, 2819711, 4468025, 7170045, 11384240, 18238260, 28999047
Offset: 1

Author

Bianca Newell, Jun 25 2021

Keywords

Crossrefs

Programs

  • PARI
    \\ S is symmetric only, V counts reflections separately.
    S(n)={my(M=matrix(n, sqrtint(n)), v=vector(n)); for(n=1, n, my(s=0); for(k=2, sqrtint(n), s += (k^2==n) + sum(j=2, k-1, v[n-k^2+j^2] - M[n-k^2+j^2, j]); M[n,k]=s); v[n]=s); v}
    V(n)={my(M=matrix(n, n\2), v=vector(n)); for(n=1, n, my(s=0); for(k=2, n\2, s += (2*k==n) + sum(j=2, min(k, n-2*k), v[n+j-2*k] - M[n+j-2*k, j-1]); M[n,k]=s); v[n]=s); v}
    seq(n)={(S(n)+V(n))/2 + vector(n, i, i<=2)} \\ Andrew Howroyd, Jan 24 2023

Extensions

Terms a(23) and beyond from Andrew Howroyd, Jan 24 2023