cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006966 Number of lattices on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 15, 53, 222, 1078, 5994, 37622, 262776, 2018305, 16873364, 152233518, 1471613387, 15150569446, 165269824761, 1901910625578, 23003059864006
Offset: 0

Views

Author

Keywords

Comments

Also commutative idempotent monoids. Also commutative idempotent semigroups of order n-1.
Commutative idempotent semigroups are also called semilattices, so A(n) counts semilattices of order n-1. - Dennis Sweeney, Jul 19 2024

References

  • J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.
  • P. D. Lincoln, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. R. Stembridge, personal communication.

Crossrefs

Cf. A006981, A006982, A055512. Main diagonal of A058142. a(n+1) is main diagonal of A058116.

Extensions

More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(19) from Nathan Lawless, Sep 15 2013
a(20) from Volker Gebhardt, Sep 28 2016

A006982 Number of unlabeled distributive lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 15, 26, 47, 82, 151, 269, 494, 891, 1639, 2978, 5483, 10006, 18428, 33749, 62162, 114083, 210189, 386292, 711811, 1309475, 2413144, 4442221, 8186962, 15077454, 27789108, 51193086, 94357143, 173859936, 320462062, 590555664, 1088548290, 2006193418, 3697997558, 6815841849, 12563729268, 23157428823, 42686759863, 78682454720, 145038561665, 267348052028, 492815778109, 908414736485
Offset: 0

Views

Author

Keywords

References

  • P. D. Lincoln, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Feb 02 2001. These were computed by the same algorithm that was used to enumerate the posets on 14 elements.

A229202 Number of semimodular lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 17, 38, 88, 212, 530, 1376, 3693, 10232, 29231, 85906, 259291, 802308, 2540635, 8220218, 27134483, 91258141, 312324027, 1086545705, 3838581926
Offset: 0

Views

Author

Nathan Lawless, Sep 15 2013

Keywords

Crossrefs

Cf. A006966 (number of lattices), A006981 (number of modular lattices).

Extensions

a(23)-a(25) from Kohonen (2017), by Jukka Kohonen, Aug 15 2017

A342132 Number of unlabeled vertically indecomposable modular lattices on n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 7, 12, 28, 54, 127, 266, 614, 1356, 3134, 7091, 16482, 37929, 88622, 206295, 484445, 1136897, 2682451, 6333249, 15005945, 35595805, 84649515, 201560350, 480845007, 1148537092, 2747477575, 6579923491, 15777658535, 37871501929
Offset: 1

Views

Author

Jukka Kohonen, Mar 01 2021

Keywords

Comments

A lattice is vertically decomposable if it has an element that is comparable to all elements and is neither the bottom nor the top element. Otherwise the lattice is vertically indecomposable.

Examples

			a(7)=3: These are the three lattices.
      o        o         __o__
     / \      /|\       / /|\ \
    o   o    o o o     o o o o o
   /|\ /    / \|/       \_\|/_/
  o o o    o   o           o
   \|/      \ /
    o        o
		

Crossrefs

Cf. A006981 (modular lattices, including vertically decomposable).

A368461 a(n) is the number of unlabeled planar modular lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 33, 70, 151, 329, 723, 1601, 3569, 8000, 18015, 40723, 92351, 209997, 478598, 1092856, 2499567, 5724970, 13128115, 30135636, 69238343, 159202607, 366308948, 843338278, 1942591448, 4476714720, 10320774953, 23802355725, 54911686727
Offset: 1

Views

Author

Jukka Kohonen, Dec 25 2023

Keywords

Crossrefs

Cf. A006981 (modular lattices), A343161 (planar distributive lattices).
Showing 1-5 of 5 results.