cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055513 Class number h = h- * h+ of cyclotomic field Q( exp(2 Pi / prime(n)) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 8, 9, 37, 121, 211, 695, 4889, 41241, 76301, 853513, 3882809, 11957417, 100146415, 838216959, 13379363737, 411322824001, 3547404378125, 9069094643165, 63434933542623, 161784800122409, 1612072001362952, 2604529186263992195, 28496379729272136525, 646901570175200968153, 1753848916484925681747, 687887859687174720123201, 2333546653547742584439257, 56234327700401832767069245, 10834138978768308207500526544
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2001

Keywords

Comments

Washington gives a very extensive table (but beware errors!).
From Jianing Song, Nov 10 2023: (Start)
h+(n) denotes the class number of Q(exp(2*Pi/n) + exp(-2*Pi/n)).
Primes p such that h+(p) != 1 are listed in A230869. As a result, if prime(n) is not in A230869, then a(n) = A000927(n), otherwise a(n) = A000927(n) * A230870(m) for prime(n) = A230869(m). (End)

Examples

			For n = 9, prime(9) = 23, a(9) = 3.
For n = 38, prime(38) = 163, a(38) = 4*2708534744692077051875131636 = 10834138978768308207500526544.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 429.
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360.

Crossrefs

For the relative class number h-, see A000927, which agrees for the first 36 terms, assuming the Generalized Riemann Hypothesis. See also A230869 and A230870.

Extensions

Washington incorrectly gives a(17) = 41421, a(25) = 411322842001.
Edited by Max Alekseyev, Oct 25 2012
a(1) = 1 prepended by Jianing Song, Nov 10 2023