cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000928 Irregular primes: primes p such that at least one of the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) is divisible by p.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619, 631, 647, 653, 659, 673, 677, 683, 691, 727, 751, 757, 761, 773, 797, 809, 811, 821, 827, 839, 877, 881, 887, 929, 953, 971, 1061
Offset: 1

Views

Author

Keywords

Comments

A prime is irregular if and only if the integer Sum_{j=1..p-1} cot^(r)(j*Pi/p)*cot(j*Pi/p) is divisible by p for some even r <= p-5. (See G. Almkvist 1994.) - Peter Luschny, Jun 24 2012
Jensen proved in 1915 that there are infinitely many irregular primes. It is not known if there are infinitely many regular primes.
"The pioneering mathematician Kummer, over the period 1847-1850, used his profound theory of cyclotomic fields to establish a certain class of primes called 'regular' primes. ... It is known that there exist an infinity of irregular primes; in fact it is a plausible conjecture that only an asymptotic fraction 1/Sqrt(e) ~ 0.6 of all primes are regular." [Ribenboim]
Johnson (1975) mentions "consecutive irregular prime pairs", meaning an irregular prime p such that, for some integer k <= 2*p-3, p divides the numerators of the Bernoulli numbers B_{2k} and B_{2k+2}. He gives the examples p = 491 (with k=168) and p = 587. No other examples are known. - N. J. A. Sloane, May 01 2021, following a suggestion from Felix Fröhlich.
An odd prime p is irregular if and only if p divides the class number of Q(zeta_p), where zeta_n = exp(2*Pi*i/n); that is, for k >= 2, p = prime(k) is irregular if and only if p divides A055513(k). For example, 37 is irregular since Q(zeta_37) has class number A055513(12) = 37. - Jianing Song, Sep 13 2022

References

  • G. Almkvist, Wilf's conjecture and a generalization, In: The Rademacher legacy to mathematics, 211-233, Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 377, 425-430 (but there are errors in the tables).
  • R. E. Crandall, Mathematica for the Sciences, Addison-Wesley Publishing Co., Redwood City, CA, 1991, pp. 248-255.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 59, p. 21, Ellipses, Paris 2008.
  • H. M. Edwards, Fermat's Last Theorem, Springer, 1977, see p. 244.
  • J. Neukirch, Algebraic Number Theory, Springer, 1999, p. 38.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 257.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 225.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, p. 350.

Crossrefs

Cf. A091887 (irregularity index of the n-th irregular prime).

Programs

  • Maple
    A000928_list := proc(len)
    local ab, m, F, p, maxp; F := {};
    for m from 2 by 2 to len do
       p := nextprime(m+1);
       ab := abs(bernoulli(m));
       maxp := min(ab, len);
       while p <= maxp do
          if ab mod p = 0
          then F := F union {p} fi;
          p := nextprime(p);
       od;
    od;
    sort(convert(F,list)) end:
    A000928_list(1000); # Peter Luschny, Apr 25 2011
  • Mathematica
    fQ[p_] := Block[{k = 1}, While[ 2k <= p-3 && Mod[ Numerator@ BernoulliB[ 2k], p] != 0, k++]; 2k <= p-3]; Select[ Prime@ Range@ 137, fQ] (* Robert G. Wilson v, Jun 25 2012 *)
    Select[Prime[Range[200]],MemberQ[Mod[Numerator[BernoulliB[2*Range[(#-1)/ 2]]], #],0]&] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    a(n)=local(p);if(n<1,0,p=a(n-1)+(n==1);while(p=nextprime(p+2), forstep(i=2,p-3,2,if(numerator(bernfrac(i))%p==0,break(2))));p) /* Michael Somos, Feb 04 2004 */
    
  • Python
    from sympy import bernoulli, primerange
    def ok(n):
        k = 1
        while 2*k <= n - 3 and bernoulli(2*k).numerator % n:
            k+=1
        return 2*k <= n - 3
    print([n for n in primerange(2, 1101) if ok(n)]) # Indranil Ghosh, Jun 27 2017, after Robert G. Wilson v

A000927 "First factor" (or relative class number) h- for cyclotomic field Q( exp(2 Pi / prime(n)) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 8, 9, 37, 121, 211, 695, 4889, 41241, 76301, 853513, 3882809, 11957417, 100146415, 838216959, 13379363737, 411322824001, 3547404378125, 9069094643165, 63434933542623, 161784800122409, 1612072001362952, 2604529186263992195, 28496379729272136525, 646901570175200968153, 1753848916484925681747, 687887859687174720123201, 2333546653547742584439257, 56234327700401832767069245, 2708534744692077051875131636
Offset: 1

Views

Author

Keywords

Comments

Washington gives a very extensive table. But beware errors: Washington incorrectly gives a(17) = 41421, a(25) = 411322842001 (corrected in the second edition).

Examples

			For n = 9, prime(9) = 23, a(9) = 3.
For n = 38, prime(38) = 163, a(38) = 2708534744692077051875131636.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 429.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360 (1st edition) pp. 412-420 (2nd edition).

Crossrefs

Subsequence of A061653.
For the full class number h = h- * h+, see A055513, which agrees for the first 36 terms, assuming the Generalized Riemann Hypothesis.

Programs

  • Maple
    f:= proc(n) uses LinearAlgebra;
      local p,M;
      p:= ithprime(n);
      M:= Matrix((p-3)/2,(p-3)/2,(i,j) -> floor((i+1)*(j+2)/p) - floor(i*(j+2)/p));
      abs(Determinant(M));
    end proc:
    1, seq(f(n),n=3..50); # Robert Israel, Sep 20 2016
  • Mathematica
    a[n_]:= With[{p = Prime[n]}, If[n<4, 1, Abs[ Det[ Table[ Quotient[ (i+2)*(j+2), p] - Quotient[ (i+1)*(j+2), p], {i, 1, (p-1)/2-2}, {j, 1, (p-1)/2-2}]]]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Aug 01 2013, translated from Pari; modified by G. C. Greubel, Aug 08 2019 *)
  • PARI
    { A000927(n) = if(n<3,return(1)); my(p=prime(n)); abs( matdet(matrix((p-1)/2-2, (p-1)/2-2, i, j, ((i+2)*(j+2))\p - ((i+1)*(j+2))\p)) ); } \\ Max Alekseyev, Oct 31 2012; corrected by G. C. Greubel and Michel Marcus, Aug 07 2019

Formula

For n>2, a(n) equals absolute value of determinant of the matrix with entries floor(i*j/p)-floor((i-1)*j/p), 3 <= i,j <= (p-1)/2, where p = prime(n) = A000040(n). - Max Alekseyev, Oct 31 2012
a(n) = A061653(A000040(n)).

Extensions

Edited by Max Alekseyev, Oct 25 2012
a(1)=1 prepended by Max Alekseyev, Mar 05 2018

A061653 Relative class number h- of cyclotomic field Q(zeta_n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 9, 1, 1, 1, 1, 1, 37, 1, 2, 1, 121, 1, 211, 1, 1, 3, 695, 1, 43, 1, 5, 3, 4889, 1, 10, 2, 9, 8, 41241, 1, 76301, 9, 7, 17, 64, 1, 853513, 8, 69, 1, 3882809, 3, 11957417, 37, 11, 19, 1280, 2, 100146415
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2001

Keywords

Comments

Note that if n == 2 (mod 4), Q(zeta_n) is the same field as Q(zeta_{n/2}).
From Richard N. Smith, Jul 15 2019: (Start)
For prime p, p divides a(p) (or a(2p)) if and only if p is in A000928.
For prime p, p divides a(4p) if and only if p is in A250216. (End)

Examples

			Q(zeta_23) = 3 is the first time that h- is bigger than 1.
		

Crossrefs

Contains A000927, A035115, A061494 as subsequences.

Formula

For prime p, a(p) = A000927(A000720(p)).

Extensions

Washington gives an extensive table on pp. 353-360.
Missing term a(1) = 1 inserted by N. J. A. Sloane, Feb 05 2009 at the suggestion of Tanya Khovanova
More terms from R. J. Mathar, Feb 06 2009
a(59) changed from 41421 to 41241 (given correctly in 2nd edition of Washington), Matthew Johnson, Jul 20 2013
a(59) in b-file changed as above by Andrew Howroyd, Feb 23 2018
a(97) corrected, a(163) added by Max Alekseyev, Mar 05 2018

A088922 Consider the n X n matrix with entries (i*j mod n), where i,j=0..n-1; a(n) = rank of this matrix over the real numbers.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 6, 7, 6, 10, 7, 9, 10, 11, 9, 13, 10, 14, 13, 13, 12, 18, 14, 15, 16, 18, 15, 21, 16, 20, 19, 19, 20, 25, 19, 21, 22, 26, 21, 27, 22, 26, 27, 25, 24, 32, 26, 29, 28, 30, 27, 33, 30, 34, 31, 31, 30, 40, 31, 33, 36, 37, 35, 39, 34, 38, 37, 41, 36, 46, 37, 39, 42, 42, 41, 45, 40, 48, 44, 43, 42, 52, 45, 45, 46, 50, 45, 55, 48, 50, 49, 49, 50, 58, 49, 53, 54, 57
Offset: 1

Views

Author

Max Alekseyev, Dec 01 2003

Keywords

Comments

Possibly related to Maillet's determinants.

Examples

			From _Alexander Adam_, Nov 10 2012: (Start)
a(2^m) = 2^(m-1) + m - 1.
Let p >= 3 be a prime number. Then a(p^m) = (p^m + 1) / 2 + m - 1.
a(625000) = a(2^3*5^7) = 2^2*5^7 + 4 * 8 - 2 = 312530. (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := MatrixRank[Table[Table[Mod[i * j, n], {j, 0, n - 1}], {i, 0, n - 1}]]; Array[a,100] (* Alexander Adam, Nov 10 2012 *)
  • PARI
    a(n) = matrank(matrix(n,n,i,j,(i*j)%n))

Formula

Let n = Prod_{i>0} p_i^{m_i} be the prime factorization of n. Then a(n) = floor((n + 1)/2) + Prod_{i>0} (m_i + 1) - 2. - Alexander Adam, Nov 10 2012
a(n) = A000005(n) + A110654(n) - 2.

A035115 Relative class number h- of cyclotomic field Q(zeta_m) where m is n-th term of A035113.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 3, 2, 3, 1, 8, 9, 5, 17, 8, 5, 9, 4, 37, 9, 7, 19, 19, 121, 10, 11, 55, 55, 11, 211, 43, 69, 201, 695, 64, 351, 13, 468, 39, 507, 156, 84, 75, 4889, 2593, 1536, 10752, 41241, 76301, 1280, 6795
Offset: 1

Views

Author

Keywords

References

  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, p. 353.

Crossrefs

Programs

  • Mathematica
    (* This is only a recomputation of the existing data. *)
    terms = 76;
    A035113 = Sort[Select[Range[3 terms], Mod[#, 4] != 2&], EulerPhi[#1] <= EulerPhi[#2]&];
    A061653 = Import["https://oeis.org/A061653/b061653.txt", "Table"][[All, 2]];
    a[n_] := A061653[[A035113[[n]] ]];
    Array[a, terms] (* Jean-François Alcover, Aug 17 2019 *)

Formula

a(n) = A061653(A035113(n)).

Extensions

Changed 41421 to 41241, value is given incorrectly in first edition of Washington, Matthew Johnson, Jul 20 2013

A061494 Relative class number h- of cyclotomic field Q(zeta_n) where n runs through positive integers not congruent to 2 (mod 4) [A042965, but omitting the initial 0].

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 8, 9, 1, 1, 1, 1, 37, 2, 1, 121, 211, 1, 1, 695, 1, 43, 5, 3, 4889, 10, 2, 9, 41241, 1, 76301, 7, 17, 64, 853513, 8, 69, 3882809, 3, 11957417, 11, 19, 1280, 100146415, 5, 2593, 838216959, 1, 6205, 1536, 55, 13379363737, 53872
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2001

Keywords

Comments

First edition of Washington incorrectly gives a(44) = h-(Q(zeta_59)) = 41421. [Matthew Johnson, Jul 20 2013]

Examples

			n=17: the 17th number not == 2 mod 4 is 23, and Q(zeta_23) = 3 is the first time that h- is bigger than 1, so a(17) = 3.
		

References

  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360.

Crossrefs

Formula

a(n) = A061653(A042965(n+1)). - M. F. Hasler, Feb 04 2009

Extensions

Missing term a(1) = 1 inserted by N. J. A. Sloane, Feb 05 2009 at the suggestion of Tanya Khovanova and M. F. Hasler
More terms (from b-file of A061653), Joerg Arndt, Oct 07 2012
a(44) corrected by Matthew Johnson, Jul 20 2013

A230869 Primes p such that the class number h-tilde_p^{+} of the real cyclotomic field Q(zeta_p + zeta_p^(-1)) is greater than 1.

Original entry on oeis.org

163, 191, 229, 257, 277, 313, 349, 397, 401, 457, 491, 521, 547, 577, 607, 631, 641, 709, 733, 761, 821, 827, 829, 853, 857, 877, 937, 941, 953, 977, 1009, 1063, 1069, 1093, 1129, 1153, 1229, 1231, 1297, 1373, 1381, 1399, 1429, 1459, 1489, 1567, 1601, 1697, 1699, 1777, 1789, 1831, 1861, 1873, 1879, 1889, 1901, 1951
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2013

Keywords

Comments

Taken from the "Main Table" of Schoof.
There is a very slight chance that some primes are missing. In the unlikely event that the number that Schoof calls h-tilde_p is 1, while the actual class number h_p is actually not equal to 1, the prime p would be missing (see the Schoof and Miller articles for details).

Crossrefs

Cf. A230870 (for the actual class numbers).

A218322 Maillet determinant for prime(n).

Original entry on oeis.org

1, -5, 49, 14641, -371293, -410338673, 16983563041, 124279533640947, -82085029703668817512, 6812495416987166882889, -16890053810563300749953435929, -531714676529925182191868570093681, 98548851401030959947062957685234211, 4247541973383735863138308138153477847255, -62534081783371829558502906501683809565833328077, 1581923629964045589238110056212521488781448927448053161
Offset: 2

Views

Author

Max Alekseyev, Oct 25 2012

Keywords

Crossrefs

Programs

  • PARI
    a(n) = p=prime(n); matdet(matrix((p-1)/2,(p-1)/2,i,j,(i/j)%p))

Formula

a(n) = (-p)^((p-3)/2) * h^-(p) = (-1)^((p-3)/2) * A203411(n) * A000927(n), where p=A000040(n).
Showing 1-8 of 8 results.