cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 72 results. Next

A073276 Irregular primes (A000928) with irregularity index one.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 233, 257, 263, 271, 283, 293, 307, 311, 347, 389, 401, 409, 421, 433, 461, 463, 523, 541, 557, 577, 593, 607, 613, 619, 653, 659, 677, 683, 727, 751, 757, 761, 773, 797, 811, 821, 827, 839, 877, 881, 887, 953, 971, 1061, 1091
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2002

Keywords

Comments

A prime p is regular if and only if the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) are not divisible by p.
In other words, irregular primes p dividing the numerator of B(2k) for a single k, 1<=k<(p-1)/2.

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; k = 1; c = 0; While[ 2*k < p - 3, If[ Mod[ Numerator[ BernoulliB[2*k]], p] == 0, c++ ]; k++ ]; If[ c == 1, Print[p]], {n, 3, 200} ]

A091887 Irregularity index of the n-th irregular prime A000928(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

T. D. Noe, Feb 09 2004

Keywords

Comments

See A091888 for definition.

Crossrefs

Cf. A073277 (primes having irregularity index 2), A060975 (primes having irregularity index 3), A061576 (least prime having irregularity index n), A091888 (irregularity index of prime(n)).

Programs

  • Mathematica
    tp=Table[p=Prime[i]; cnt=0; k=1; While[2k<=p-3, If[Mod[Numerator[BernoulliB[2k]], p]==0, cnt++ ]; k++ ]; cnt, {i, 400}]; Select[tp, #>0&]

A035112 Smallest even index 2a such that n-th irregular prime p (A000928(n)) divides Bernoulli_{2a} with 0<=2a<=p-3.

Original entry on oeis.org

32, 44, 58, 68, 24, 22, 130, 62, 84, 164, 100, 84, 20, 156, 88, 292, 280, 186, 100, 200, 382, 126, 240, 366, 196, 130, 94, 292, 400, 86, 270, 222, 52, 90, 22, 592, 522, 20, 428, 80, 236, 48, 224, 408, 628, 32, 12, 378, 290, 514, 260, 732, 220, 330, 544, 744, 102
Offset: 1

Views

Author

Keywords

Comments

The ordered pair (p(n),a(n)) where p(n) is the n-th irregular prime is called an irregular pair. Some irregular primes, such as 157, are in more than one pair. See A091887 for the number of pairs for each irregular prime. See A092681 and A092682 for higher-order irregular pairs. - T. D. Noe, Mar 03 2004

Examples

			The first irregular prime (37) divides the numerator (-7709321041217) of the 32nd Bernoulli number.
		

References

  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, p. 350.

Crossrefs

Programs

  • Mathematica
    Do[ p = Prime[ n ]; k = 1; While[ 2*k < p - 3 && Mod[ Numerator[ BernoulliB[ 2*k ] ], p ] != 0, k++ ]; If[ 2*k != p - 3, Print[ 2*k ] ], { n, 3, 200} ]

Extensions

More terms from Robert G. Wilson v, May 12 2001

A092681 Least number 2k such that p^2 divides the numerator of the Bernoulli number B(2k), where p is the n-th irregular prime, A000928(n).

Original entry on oeis.org

284, 914, 3292, 5768, 228, 12112, 11082, 6302, 11498, 40220, 34724, 51976, 1434, 74750, 67316, 21508, 63532, 39378, 67066, 64012, 91576, 137766, 137552, 105582, 158838, 147660, 175758, 194776, 173842, 102148, 132072, 107112, 127736, 29248
Offset: 1

Views

Author

T. D. Noe, Mar 03 2004

Keywords

Comments

The ordered-pair (p(n),a(n)), where p(n) is the n-th irregular prime, is called a second-order irregular pair. Some irregular primes, such as 157, have more than one pair. See A091887 for a count of the pairs for each irregular prime.

Crossrefs

A092291 Let p = n-th irregular prime, A000928(n). Then a(n) = smallest value of m such that numerator(Bernoulli(2*m)/(2*m)) / numerator(Bernoulli(2*m)/(2*m*(2*m-1))) equals p.

Original entry on oeis.org

574, 1269, 1910, 3384, 1185, 1376, 9611, 4789, 9670, 20946, 13019, 11247, 2689, 22708, 13355, 45251, 48407, 32653, 18761, 38706, 76391, 25563, 50310, 79023, 44948, 29864, 21716, 71441, 104339, 22993, 73572, 61549, 14714, 26122, 6227, 179369, 159687, 5862, 132157, 24925, 76023, 15346, 73479, 136956, 212240, 10587, 3801, 137040, 108520, 194171, 98550, 282532, 87272, 133081, 220187, 305002, 41764, 27268, 380180, 70921, 184940, 241076, 73858, 80108, 250927
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion of Roland Bacher, Feb 05 2004

Keywords

Comments

It was conjectured that a(n) = (1 + A000928(n) * (A035112(n) - 1))/2. However, Bernd Kellner's insightful paper shows that this formula first fails for the irregular prime 6449. - T. D. Noe, Feb 10 2004

Crossrefs

Term in A090495 corresponding to first occurrence of p in A090496.

Programs

  • Mathematica
    (* This program is not convenient for a large number of terms *) irregularPrimeQ[p_] := Module[{k = 1}, While[2*k <= p-3 && Mod[ Numerator[ BernoulliB[2*k]], p] != 0, k++]; 2*k <= p-3]; irregularPrime[1] = 37; irregularPrime[n_] := irregularPrime[n] = Module[{p}, For[p = NextPrime[ irregularPrime[n-1]], True, p = NextPrime[p], If[ irregularPrimeQ[p], Return[p]]]]; a[n_] := a[n] = For[m = 1, True, m++, If[ Numerator[BernoulliB[2*m]/(2*m)] / Numerator[ BernoulliB[2*m]/(2*m*(2*m-1))] == irregularPrime[n], Return[m]]]; Table[ Print[a[n]]; a[n], {n, 1, 15}] (* Jean-François Alcover, Sep 27 2013 *)

Extensions

Initial terms were computed by Roland Bacher, Feb 04 2004; further terms from Hans Havermann, Feb 05 2004 and T. D. Noe, Feb 06 2004
Offset modified by Jean-François Alcover, Sep 27 2013

A092682 Least number 2k such that p^3 divides the numerator of the Bernoulli number B(2k), where p is the n-th irregular prime, A000928(n).

Original entry on oeis.org

37580, 86464, 153640, 581468, 914250, 454892, 1510618, 3557642, 84974, 8905404, 11482532, 9629910, 1025814, 9252440, 6484016, 22003936, 17706562, 30054878, 18332698, 37340812, 39775150, 31082358, 5118308, 20315982, 57395934, 25079280
Offset: 1

Views

Author

T. D. Noe, Mar 03 2004

Keywords

Comments

The ordered-pair (p(n),a(n)), where p(n) is the n-th irregular prime, is called a third-order irregular pair. Some irregular primes, such as 157, have more than one pair. See A091887 for a count of the pairs for each irregular prime.

Crossrefs

A132360 Partial sum of irregular primes A000928.

Original entry on oeis.org

37, 96, 163, 264, 367, 498, 647, 804, 1037, 1294, 1557, 1828, 2111, 2404, 2711, 3022, 3369, 3722, 4101, 4490, 4891, 5300, 5721, 6154, 6615, 7078, 7545, 8036, 8559, 9100, 9647, 10204, 10781, 11368, 11961, 12568, 13181, 13798, 14417, 15048, 15695, 16348
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2007

Keywords

Comments

This sequence is infinite because Jensen proved in 1915 that there are infinitely many irregular primes.

Crossrefs

Extensions

More terms from R. J. Mathar, Nov 12 2007

A100639 Residues modulo 10 of the irregular primes (A000928).

Original entry on oeis.org

7, 9, 7, 1, 3, 1, 9, 7, 3, 7, 3, 1, 3, 3, 7, 1, 7, 3, 9, 9, 1, 9, 1, 3, 1, 3, 7, 1, 3, 1, 7, 7, 7, 7, 3, 7, 3, 7, 9, 1, 7, 3, 9, 3, 7, 3, 1, 7, 1, 7, 1, 3, 7, 9, 1, 1, 7, 9, 7, 1, 7, 9, 3, 1, 1, 1, 7, 9, 1, 3, 3, 1, 7, 9, 7, 9, 3, 1, 7, 1, 7, 9, 7, 7, 1, 9, 9, 9, 3, 9, 3, 9, 7, 9, 3, 9, 1, 7, 3, 9, 1, 3, 3, 9, 7
Offset: 1

Views

Author

Pahikkala Jussi, Dec 04 2004

Keywords

Examples

			a(6) = 1 because the 6th irregular prime is 131 and 131 mod 10 = 1.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425-430 (but there are errors).

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{p = n, k = 1}, While[ 2*k <= p - 3 && Mod[ Numerator[ BernoulliB[ 2*k ]], p ] != 0, k++ ]; 2k != p - 1]; Mod[ Select[ Prime[ Range[2, 275]], fQ[ # ] &], 10] (* Robert G. Wilson v, Dec 10 2004 *)

Formula

a(n) = A010879(A000928(n)). - Amiram Eldar, Jul 02 2024

Extensions

More terms from Robert G. Wilson v, Dec 10 2004

A281246 Least positive odd number m such that numerator of zeta(-m) are divisible by A000928(n).

Original entry on oeis.org

31, 43, 57, 67, 23, 21, 129, 61, 83, 163, 99, 83, 19, 155, 87, 291, 279, 185, 99, 199, 381, 125, 239, 365, 195, 129, 93, 291, 399, 85, 269, 221, 51, 89, 21, 591, 521, 19, 427, 79, 235, 47, 223, 407, 627, 31, 11, 377, 289, 513, 259, 731, 219, 329, 543, 743, 101
Offset: 1

Views

Author

Seiichi Manyama, Jan 18 2017

Keywords

Examples

			zeta(-11) = 691/32760 and 691 are divisible by A000928(47). So a(47) = 11.
		

Crossrefs

A092901 Number of irregular primes (A000928) less than 10^n.

Original entry on oeis.org

0, 3, 64, 497, 3789, 30870, 261871, 2266482, 20006269
Offset: 1

Views

Author

Eric W. Weisstein, Mar 13 2004

Keywords

Comments

Buhler maintains a list of regular and irregular primes. Data about each irregular prime includes the index of irregularity, irregular pairs, Vandiver residue and two cyclotomic residues.
Corrected using latest data from Buhler and Harvey. - T. D. Noe, Apr 27 2011

Examples

			The smallest irregular prime is 37.
		

Crossrefs

Cf. A000928.

Extensions

a(6) and a(7) from T. D. Noe, Mar 31 2004
a(8) from T. D. Noe, Apr 27 2011
a(9) from Amiram Eldar, Mar 05 2019
Showing 1-10 of 72 results. Next