cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055513 Class number h = h- * h+ of cyclotomic field Q( exp(2 Pi / prime(n)) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 8, 9, 37, 121, 211, 695, 4889, 41241, 76301, 853513, 3882809, 11957417, 100146415, 838216959, 13379363737, 411322824001, 3547404378125, 9069094643165, 63434933542623, 161784800122409, 1612072001362952, 2604529186263992195, 28496379729272136525, 646901570175200968153, 1753848916484925681747, 687887859687174720123201, 2333546653547742584439257, 56234327700401832767069245, 10834138978768308207500526544
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2001

Keywords

Comments

Washington gives a very extensive table (but beware errors!).
From Jianing Song, Nov 10 2023: (Start)
h+(n) denotes the class number of Q(exp(2*Pi/n) + exp(-2*Pi/n)).
Primes p such that h+(p) != 1 are listed in A230869. As a result, if prime(n) is not in A230869, then a(n) = A000927(n), otherwise a(n) = A000927(n) * A230870(m) for prime(n) = A230869(m). (End)

Examples

			For n = 9, prime(9) = 23, a(9) = 3.
For n = 38, prime(38) = 163, a(38) = 4*2708534744692077051875131636 = 10834138978768308207500526544.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 429.
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360.

Crossrefs

For the relative class number h-, see A000927, which agrees for the first 36 terms, assuming the Generalized Riemann Hypothesis. See also A230869 and A230870.

Extensions

Washington incorrectly gives a(17) = 41421, a(25) = 411322842001.
Edited by Max Alekseyev, Oct 25 2012
a(1) = 1 prepended by Jianing Song, Nov 10 2023

A061653 Relative class number h- of cyclotomic field Q(zeta_n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 9, 1, 1, 1, 1, 1, 37, 1, 2, 1, 121, 1, 211, 1, 1, 3, 695, 1, 43, 1, 5, 3, 4889, 1, 10, 2, 9, 8, 41241, 1, 76301, 9, 7, 17, 64, 1, 853513, 8, 69, 1, 3882809, 3, 11957417, 37, 11, 19, 1280, 2, 100146415
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2001

Keywords

Comments

Note that if n == 2 (mod 4), Q(zeta_n) is the same field as Q(zeta_{n/2}).
From Richard N. Smith, Jul 15 2019: (Start)
For prime p, p divides a(p) (or a(2p)) if and only if p is in A000928.
For prime p, p divides a(4p) if and only if p is in A250216. (End)

Examples

			Q(zeta_23) = 3 is the first time that h- is bigger than 1.
		

Crossrefs

Contains A000927, A035115, A061494 as subsequences.

Formula

For prime p, a(p) = A000927(A000720(p)).

Extensions

Washington gives an extensive table on pp. 353-360.
Missing term a(1) = 1 inserted by N. J. A. Sloane, Feb 05 2009 at the suggestion of Tanya Khovanova
More terms from R. J. Mathar, Feb 06 2009
a(59) changed from 41421 to 41241 (given correctly in 2nd edition of Washington), Matthew Johnson, Jul 20 2013
a(59) in b-file changed as above by Andrew Howroyd, Feb 23 2018
a(97) corrected, a(163) added by Max Alekseyev, Mar 05 2018

A088922 Consider the n X n matrix with entries (i*j mod n), where i,j=0..n-1; a(n) = rank of this matrix over the real numbers.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 6, 7, 6, 10, 7, 9, 10, 11, 9, 13, 10, 14, 13, 13, 12, 18, 14, 15, 16, 18, 15, 21, 16, 20, 19, 19, 20, 25, 19, 21, 22, 26, 21, 27, 22, 26, 27, 25, 24, 32, 26, 29, 28, 30, 27, 33, 30, 34, 31, 31, 30, 40, 31, 33, 36, 37, 35, 39, 34, 38, 37, 41, 36, 46, 37, 39, 42, 42, 41, 45, 40, 48, 44, 43, 42, 52, 45, 45, 46, 50, 45, 55, 48, 50, 49, 49, 50, 58, 49, 53, 54, 57
Offset: 1

Views

Author

Max Alekseyev, Dec 01 2003

Keywords

Comments

Possibly related to Maillet's determinants.

Examples

			From _Alexander Adam_, Nov 10 2012: (Start)
a(2^m) = 2^(m-1) + m - 1.
Let p >= 3 be a prime number. Then a(p^m) = (p^m + 1) / 2 + m - 1.
a(625000) = a(2^3*5^7) = 2^2*5^7 + 4 * 8 - 2 = 312530. (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := MatrixRank[Table[Table[Mod[i * j, n], {j, 0, n - 1}], {i, 0, n - 1}]]; Array[a,100] (* Alexander Adam, Nov 10 2012 *)
  • PARI
    a(n) = matrank(matrix(n,n,i,j,(i*j)%n))

Formula

Let n = Prod_{i>0} p_i^{m_i} be the prime factorization of n. Then a(n) = floor((n + 1)/2) + Prod_{i>0} (m_i + 1) - 2. - Alexander Adam, Nov 10 2012
a(n) = A000005(n) + A110654(n) - 2.

A230869 Primes p such that the class number h-tilde_p^{+} of the real cyclotomic field Q(zeta_p + zeta_p^(-1)) is greater than 1.

Original entry on oeis.org

163, 191, 229, 257, 277, 313, 349, 397, 401, 457, 491, 521, 547, 577, 607, 631, 641, 709, 733, 761, 821, 827, 829, 853, 857, 877, 937, 941, 953, 977, 1009, 1063, 1069, 1093, 1129, 1153, 1229, 1231, 1297, 1373, 1381, 1399, 1429, 1459, 1489, 1567, 1601, 1697, 1699, 1777, 1789, 1831, 1861, 1873, 1879, 1889, 1901, 1951
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2013

Keywords

Comments

Taken from the "Main Table" of Schoof.
There is a very slight chance that some primes are missing. In the unlikely event that the number that Schoof calls h-tilde_p is 1, while the actual class number h_p is actually not equal to 1, the prime p would be missing (see the Schoof and Miller articles for details).

Crossrefs

Cf. A230870 (for the actual class numbers).

A193179 Number of classes of two-dimensional generalized Bravais lattices with 2n-fold symmetry.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 2, 9, 1, 9, 17, 1, 32, 1, 3, 34, 19, 2, 5, 121, 1, 211, 55, 1, 201, 695, 32, 43
Offset: 2

Views

Author

N. J. A. Sloane, Jul 17 2011

Keywords

Comments

Related to class numbers of cyclotomic fields, although the precise relationship is not clear to me. Compare A000927.

References

  • Mermin, N. David; Rokhsar, Daniel S.; and Wright, David C.; Beware of 46-fold symmetry: the classification of two-dimensional quasicrystallographic lattices. Phys. Rev. Lett. 58 (1987), 2099-2101.

Crossrefs

See A193175 for values of 2n such that a(n) = 1.
Cf. A000927.

A218322 Maillet determinant for prime(n).

Original entry on oeis.org

1, -5, 49, 14641, -371293, -410338673, 16983563041, 124279533640947, -82085029703668817512, 6812495416987166882889, -16890053810563300749953435929, -531714676529925182191868570093681, 98548851401030959947062957685234211, 4247541973383735863138308138153477847255, -62534081783371829558502906501683809565833328077, 1581923629964045589238110056212521488781448927448053161
Offset: 2

Views

Author

Max Alekseyev, Oct 25 2012

Keywords

Crossrefs

Programs

  • PARI
    a(n) = p=prime(n); matdet(matrix((p-1)/2,(p-1)/2,i,j,(i/j)%p))

Formula

a(n) = (-p)^((p-3)/2) * h^-(p) = (-1)^((p-3)/2) * A203411(n) * A000927(n), where p=A000040(n).

A309520 Primes p for which h1(p)/G(p) has a record value.

Original entry on oeis.org

3, 5, 7, 11, 23, 73, 89, 179, 233, 761, 1451, 2741, 4391, 5231, 42611, 198221, 305741, 6766811, 1326662801, 1979990861, 4735703723, 9697282541, 35285447111, 45169368641, 169684421321, 187946428721
Offset: 1

Views

Author

Michel Marcus, Aug 06 2019

Keywords

Comments

h1 is given by A000927, and G(p) = 2*p*(p/(4*Pi^2))^((p-1)/4).
a(1)-a(12) from Fung et al., a(13)-a(14) from Shokrollahi, a(15)-a(17) from Broadhurst, a(18) from Languasco et al. and Broadhurst, a(19)-a(26) from Broadhurst.

Crossrefs

Cf. A000927 (h1), A073010 (value for p=3).

Programs

  • PARI
    h1(p) = if (p<5, 1, abs( matdet(matrix((p-1)/2-2, (p-1)/2-2, i, j, ((i+2)*(j+2))\p - ((i+1)*(j+2))\p)) )); \\ A000927
    G(p) = 2*p*(p/(4*Pi^2))^((p-1)/4);
    lista(nn) = {my(m = 0, nm); for (n=2, nn, p = prime(n); if ((nm = h1(p)/G(p)) > m, print1(p, ", "); m = nm););}

Extensions

Missing terms 42611, 198221, 305741 and terms larger than 6766811 added by Alessandro Languasco on behalf of David Broadhurst, Jul 24 2021
Showing 1-7 of 7 results.