A055514 Composite numbers that are the sum of consecutive prime numbers and are divisible by the first and last of these primes.
10, 39, 155, 371, 10225245560, 2935561623745, 454539357304421, 7228559051256366318, 1390718713078158117206
Offset: 1
Examples
503 + 509 + 521 + ... + 508213 = 10225245560, which is divisible by 503 and 508213. - _Manuel Valdivia_, Nov 17 2011 From _Michael Beight_, Jul 22 2012: (Start) a(8) = 7228559051256366318 = 73 + ... + 18281691653; a(9) = 1390718713078158117206 = 370794889 + ... + 267902967061. (End)
Links
- C. Rivera, Puzzle
Programs
-
Mathematica
Module[{nn=200},Table[Total/@Select[Partition[Prime[Range[10000]],n,1],scpQ],{n,2,nn}]]//Flatten (* The program generates the first four terms of the sequence. *) (* Harvey P. Dale, Oct 22 2022 *)
-
PARI
S=vector(N=50000); s=0; i=1; forprime(p=2,oo, S[i++]=s+=p; for(j=1,i-2, (s-S[j])%p || (s-S[j])%prime(j)|| print1(s-S[j]",")|| break)) \\ gives a(1..5), but too slow to go beyond. - M. F. Hasler, Nov 21 2021
Extensions
a(7) from Donovan Johnson, Jun 19 2008
a(8) and a(9) from Michael Beight, Jul 22 2012
Comments