A055515 a(n) = (2^n - 1)/product(2^p - 1) where the product is over all distinct primes p that divide n.
1, 1, 1, 5, 1, 3, 1, 85, 73, 11, 1, 195, 1, 43, 151, 21845, 1, 12483, 1, 11275, 2359, 683, 1, 798915, 1082401, 2731, 19173961, 704555, 1, 1649373, 1, 1431655765, 599479, 43691, 8727391, 3272356035, 1, 174763, 9588151, 11822705675, 1, 1649061309, 1
Offset: 1
Examples
a(12) = (2^12 -1)/((2^2 -1) (2^3 -1)) = 195.
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A055977.
Programs
-
Mathematica
Table[(2^n-1)/Times@@(2^#-1&/@FactorInteger[n][[;;,1]]),{n,50}] (* Harvey P. Dale, Jan 18 2025 *)
-
PARI
a(n) = my(f = factor(n)); (2^n-1)/prod(i=1, #f~, 2^f[i, 1] -1); \\ Michel Marcus, May 18 2014
Formula
For p prime, a(p) = 1. - Michel Marcus, May 18 2014
For p prime, a(p^2) = A051156(n). - Michel Marcus, May 18 2014