cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055515 a(n) = (2^n - 1)/product(2^p - 1) where the product is over all distinct primes p that divide n.

Original entry on oeis.org

1, 1, 1, 5, 1, 3, 1, 85, 73, 11, 1, 195, 1, 43, 151, 21845, 1, 12483, 1, 11275, 2359, 683, 1, 798915, 1082401, 2731, 19173961, 704555, 1, 1649373, 1, 1431655765, 599479, 43691, 8727391, 3272356035, 1, 174763, 9588151, 11822705675, 1, 1649061309, 1
Offset: 1

Views

Author

Leroy Quet, Jul 03 2000

Keywords

Examples

			a(12) = (2^12 -1)/((2^2 -1) (2^3 -1)) = 195.
		

Crossrefs

Cf. A055977.

Programs

  • Mathematica
    Table[(2^n-1)/Times@@(2^#-1&/@FactorInteger[n][[;;,1]]),{n,50}] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    a(n) = my(f = factor(n)); (2^n-1)/prod(i=1, #f~, 2^f[i, 1] -1); \\ Michel Marcus, May 18 2014

Formula

For p prime, a(p) = 1. - Michel Marcus, May 18 2014
For p prime, a(p^2) = A051156(n). - Michel Marcus, May 18 2014