A055521 Restricted left truncatable (Henry VIII) primes.
773, 3373, 3947, 4643, 5113, 6397, 6967, 7937, 15647, 16823, 24373, 33547, 34337, 37643, 56983, 57853, 59743, 62383, 63347, 63617, 69337, 72467, 72617, 75653, 76367, 87643, 92683, 97883, 98317, 121997, 124337, 163853, 213613, 236653
Offset: 1
Examples
773 is in the sequence since 773, 73, 3 are primes, while no digit 1..9 gives a prime if placed before 773. 13 is not in the sequence since for example 113 is prime. 2 and 5 are disqualified for only having one digit. - _Jens Kruse Andersen_, Jul 29 2014
References
- Kahan, S. and Weintraub, S. "Left Truncatable Primes." J. Recr. Math. 29, 254-264, 1998.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..1440 (complete sequence)
- I. O. Angell, and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977.
- James Grime and Brady Haran, 357686312646216567629137, Numberphile video (2018)
- Eric Weisstein's World of Mathematics, Truncatable Prime
- Index entries for sequences related to truncatable primes
Crossrefs
Cf. A024785.
Programs
-
Python
from sympy import isprime, primerange def afull(): alst, prime_strs, an, digits = [], ["2", "3", "5", "7"], 0, 1 while len(prime_strs) > 0: new_prime_strs = set() for p in prime_strs: can_extend = False for d in "123456789": c = d + p if isprime(int(c)): can_extend = True new_prime_strs.add(c) if digits > 1 and not can_extend: alst.append(int(p)) prime_strs = new_prime_strs digits += 1 return sorted(alst) print(afull()) # Michael S. Branicky, Dec 11 2022
Comments