cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055521 Restricted left truncatable (Henry VIII) primes.

Original entry on oeis.org

773, 3373, 3947, 4643, 5113, 6397, 6967, 7937, 15647, 16823, 24373, 33547, 34337, 37643, 56983, 57853, 59743, 62383, 63347, 63617, 69337, 72467, 72617, 75653, 76367, 87643, 92683, 97883, 98317, 121997, 124337, 163853, 213613, 236653
Offset: 1

Views

Author

Keywords

Comments

There are 1440 such primes, the largest being 357686312646216567629137.
Left-truncatable primes (A024785) which have at least two digits and are not the end of a larger left-truncatable prime. - Jens Kruse Andersen, Jul 29 2014

Examples

			773 is in the sequence since 773, 73, 3 are primes, while no digit 1..9 gives a prime if placed before 773. 13 is not in the sequence since for example 113 is prime. 2 and 5 are disqualified for only having one digit. - _Jens Kruse Andersen_, Jul 29 2014
		

References

  • Kahan, S. and Weintraub, S. "Left Truncatable Primes." J. Recr. Math. 29, 254-264, 1998.

Crossrefs

Cf. A024785.

Programs

  • Python
    from sympy import isprime, primerange
    def afull():
        alst, prime_strs, an, digits = [], ["2", "3", "5", "7"], 0, 1
        while len(prime_strs) > 0:
            new_prime_strs = set()
            for p in prime_strs:
                can_extend = False
                for d in "123456789":
                    c = d + p
                    if isprime(int(c)):
                        can_extend = True
                        new_prime_strs.add(c)
                if digits > 1 and not can_extend:
                    alst.append(int(p))
            prime_strs = new_prime_strs
            digits += 1
        return sorted(alst)
    print(afull()) # Michael S. Branicky, Dec 11 2022