A055561 Numbers m such that there are precisely 3 groups of order m.
75, 363, 609, 867, 1183, 1265, 1275, 1491, 1587, 1725, 1805, 2067, 2175, 2373, 2523, 3045, 3525, 3685, 3795, 3975, 4137, 4205, 4335, 4425, 4895, 5019, 5043, 5109, 5901, 5915, 6171, 6225, 6627, 6675, 6699, 7935, 8025, 8427, 8475, 8855, 9429, 9537, 10275
Offset: 1
Keywords
Examples
For m = 75, the 3 groups of order 75 are C75, (C5 x C5) : C3, C15 x C5 and for m = 363 the 3 groups of order 363 are C363, (C11 x C11) : C3, C33 x C11 where C is the Cyclic group of the stated order. The symbols x and : mean direct and semi-direct products respectively. - _Muniru A Asiru_, Oct 24 2017
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..234567, terms 1..206 from Muniru A Asiru.
- H. U. Besche, B. Eick and E. A. O'Brien, The Small Groups Library
- H. U. Besche, B. Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
- J. H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica, Math. Intell., Vol. 30, No. 2, Spring 2008.
- Gordon Royle, Numbers of Small Groups [dead link]
- Index entries for sequences related to groups
Crossrefs
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), this sequence (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
A350245 is a subsequence.
Programs
-
PARI
is(n) = { my(p = gcd(n, eulerphi(n)),f,g); if (isprime(p), return(n % p^2 == 0 && isprime(gcd(p+1, n)))); if (omega(p) != 2 || !issquarefree(n), return(0)); f = factor(n); g = factor(p); 1 == g[2,1] % g[1,1] && 1 == sum(k=1, matsize(f)[1], f[k,1] % g[1,1] == 1) && 1 == sum(k=1, matsize(f)[1], f[k,1] % g[2,1] == 1); }; seq(N) = { my(a = vector(N), k=0, n=1); while(k < N, if(is(n), a[k++]=n); n++); a; }; seq(43) \\ Gheorghe Coserea, Dec 12 2017
Comments