cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055252 Triangle of partial row sums (prs) of triangle A055249.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is (((1-z)^2)/(1-2*z)^3)/(1-x*z/(1-z)).
This is the third member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear as A049611(n+1), A001793, A001788, A055580, A055581, A055582, A055583 for m=0..6.

Examples

			[0] 1
[1] 4, 1
[2] 13, 5, 1
[3] 38, 18, 6, 1
[4] 104, 56, 24, 7, 1
[5] 272, 160, 80, 31, 8, 1
[6] 688, 432, 240, 111, 39, 9, 1
[7] 1696, 1120, 672, 351, 150, 48, 10, 1
Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
		

Crossrefs

Cf. A007318, A055248, A055249. Row sums: A049612(n+1)= A055584(n, 0).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1):
    for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024

Formula

a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024

A055582 Sixth column of triangle A055252.

Original entry on oeis.org

1, 9, 48, 198, 699, 2223, 6562, 18324, 49029, 126837, 319332, 786258, 1900351, 4521771, 10616598, 24641280, 56622825, 128974545, 291503800, 654311070, 1459617411, 3238002279, 7147093578, 15703473708, 34359737869, 74893491693
Offset: 0

Author

Wolfdieter Lang, May 26 2000

Keywords

Crossrefs

Cf. A055252, A055249, A034009, partial sums of A055581.

Programs

  • Mathematica
    CoefficientList[Series[1/(((1 - 2 x)^3) (1 - x)^3), {x, 0, 25}], x] (* Michael De Vlieger, Apr 23 2020 *)

Formula

G.f.: 1/(((1-2*x)^3)*(1-x)^3).
a(n)= A055252(n+5, 5). a(n)= sum(a(j), j=0..n-1)+A034009(n), n >= 1.
a(n)= (n^2 - 3*n + 8)*(2^(n+3) -1)/2 - 9*(n+3). [Yahia Kahloune, Aug 11 2013]

A058395 Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n, 0) = T(n, 3) with T(2n, 0) = T(n, m) for some other value of m would change the generating function to the coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^m. This would produce A058393, A058394, A057884 (and effectively A007318).

Examples

			The array T(n, k) starts:
[0] 1, 0,  3,   0,   6,   0,  10,    0,   15,    0, ...
[1] 1, 1,  3,   3,   6,   6,  10,   10,   15,   15, ...
[2] 1, 2,  4,   6,   9,  12,  16,   20,   25,   30, ...
[3] 1, 3,  6,  10,  15,  21,  28,   36,   45,   55, ...
[4] 1, 4,  9,  16,  25,  36,  49,   64,   81,  100, ...
[5] 1, 5, 13,  25,  41,  61,  85,  113,  145,  181, ...
[6] 1, 6, 18,  38,  66, 102, 146,  198,  258,  326, ...
[7] 1, 7, 24,  56, 104, 168, 248,  344,  456,  584, ...
[8] 1, 8, 31,  80, 160, 272, 416,  592,  800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
		

Crossrefs

Rows are A000217 with zeros, A008805, A002620, A000217, A000290, A001844, A005899.
Columns are A000012, A001477, A016028.
The triangle A055252 also appears in half of the array.

Programs

  • Maple
    gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
    seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
  • Mathematica
    T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
    T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
    Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)

Formula

T(n, k) = T(n-1, k-1) + T(n, k-1) with T(0, k) = 1, T(2*n, 0) = T(n, 3) and T(2*n + 1, 0) = 0. Coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^3.

A119808 Triangle read by rows: T(n,k) is the number of ternary words of length n having k runs of consecutive 0's (0<=k<=ceiling(n/2)).

Original entry on oeis.org

1, 2, 1, 4, 5, 8, 17, 2, 16, 49, 16, 32, 129, 78, 4, 64, 321, 300, 44, 128, 769, 1002, 280, 8, 256, 1793, 3048, 1352, 112, 512, 4097, 8678, 5500, 880, 16, 1024, 9217, 23524, 19892, 5120, 272, 2048, 20481, 61410, 66032, 24600, 2544, 32, 4096, 45057, 155616, 205360
Offset: 0

Author

Emeric Deutsch, May 25 2006

Keywords

Comments

Row n contains 1+ceiling(n/2) terms. T(n,0) = 2^n (A000079). T(n,1) = 1+(n-1)*2^n = A000337(n) for n>=1. T(n,2) = 2*A055581(n-3) (n>=3). Sum(k*T(n,k),k>=0) = A081038(n-1).

Examples

			T(2,1) = 5 because we have 00, 01, 02, 10 and 20.
Triangle starts:
1;
2,1;
4,5;
8,17,2;
16,49,16;
32,129,78,4;
		

Crossrefs

Programs

  • Maple
    G:=(1-z+t*z)/(1-3*z+2*z^2-2*t*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..ceil(n/2)) od; # yields sequence in triangular form
  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&]; a = y x/(1-x) +1;Map[f,CoefficientList[ Series[a/(1-2x a),{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 19 2012 *)

Formula

G.f.: (1-z+tz)/(1-3z+2z^2-2tz^2). G.f. of column k: 2^(k-1)*z^(2k-1)*/ [(1-z)^k*(1-2z)^(k+1)] (k>=1). Recurrence relation: T(n,k) = 3T(n-1,k) -2T(n-2,k) +2T(n-2,k-1) for n>=2.

A121466 Triangle read by rows: T(n,k) = is the number of directed column-convex polyominoes of area n having along the lower contour exactly k reentrant corners, i.e., a vertical step that is followed by a horizontal step (n >= 1, k >= 0).

Original entry on oeis.org

1, 2, 4, 1, 8, 5, 16, 17, 1, 32, 49, 8, 64, 129, 39, 1, 128, 321, 150, 11, 256, 769, 501, 70, 1, 512, 1793, 1524, 338, 14, 1024, 4097, 4339, 1375, 110, 1, 2048, 9217, 11762, 4973, 640, 17, 4096, 20481, 30705, 16508, 3075, 159, 1, 8192, 45057, 77808, 51340, 12918
Offset: 1

Author

Emeric Deutsch, Aug 02 2006

Keywords

Comments

Also number of nondecreasing Dyck paths of semilength n and such that there are k positive differences in the sequence of the valley altitudes, preceded by a 0. Example: T(5,2)=1 because we have UUDUUDUDDD, where U=(1,1) and D=(1,-1) (the valleys are at the altitudes 1 and 2 with two "jumps" in the sequence 0,1,2).
Row n has ceiling(n/2) terms.
Row sums are the odd-subscripted Fibonacci numbers (A001519).

Examples

			T(5,2)=1 because we have the directed column-convex polyomino [(0,2),(1,3),(2,3)] (here the j-th pair gives the lower and upper levels of the j-th column).
Triangle starts:
   1;
   2;
   4,   1;
   8,   5;
  16,  17,   1;
  32,  49,   8;
  64, 129,  39,   1;
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->add(2^j*binomial(n-k-2-j,k-1)*binomial(k+j,k),j=0..n-2*k-1): for n from 0 to 15 do seq(T(n,k),k=0..ceil(n/2)-1) od; # yields sequence in triangular form

Formula

T(n,0) = 2^(n-1) = A000079(n-1).
T(n,1) = 1 + (n-3)*2^(n-2) = A000337(n-2).
T(n,2) = A055581(n-5).
Sum_{k=0..ceiling(n/2)-1} k*T(n,k) = A001870(n-3).
T(n,k) = Sum_{j=0..n-2*k-1} 2^j*binomial(n-k-2-j,k-1)*binomial(k+j,k) for k >= 1; T(n,0) = 2^(n-1).
G.f.: G(t,z) = z(1-z)/(1-3z+2z^2-tz^2).
Showing 1-5 of 5 results.