A055252 Triangle of partial row sums (prs) of triangle A055249.
1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0
Examples
[0] 1 [1] 4, 1 [2] 13, 5, 1 [3] 38, 18, 6, 1 [4] 104, 56, 24, 7, 1 [5] 272, 160, 80, 31, 8, 1 [6] 688, 432, 240, 111, 39, 9, 1 [7] 1696, 1120, 672, 351, 150, 48, 10, 1 Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1): for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024
Formula
a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024
A110441 Triangular array formed by the Mersenne numbers.
1, 3, 1, 7, 6, 1, 15, 23, 9, 1, 31, 72, 48, 12, 1, 63, 201, 198, 82, 15, 1, 127, 522, 699, 420, 125, 18, 1, 255, 1291, 2223, 1795, 765, 177, 21, 1, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1
Offset: 0
Comments
This sequence factors A038255 into a product of Riordan arrays.
Subtriangle of the triangle given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
From Peter Bala, Jul 22 2014: (Start)
Let M denote the lower unit triangular array A130330 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)
For 1<=k<=n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01 and 02. - Milan Janjic, Dec 20 2016
The convolution triangle of the Mersenne numbers. - Peter Luschny, Oct 09 2022
Examples
Triangle starts: 1; 3, 1; 7, 6, 1; 15, 23, 9, 1; 31, 72, 48, 12, 1; (0, 3, -2/3, 2/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins: 1 0, 1 0, 3, 1 0, 7, 6, 1 0, 15, 23, 9, 1 0, 31, 72, 48, 12, 1. - _Philippe Deléham_, Mar 19 2012 With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins / 1 \/1 \/1 \ / 1 \ | 3 1 ||0 1 ||0 1 | | 3 1 | | 7 3 1 ||0 3 1 ||0 0 1 |... = | 7 6 1 | |15 7 3 1 ||0 7 3 1 ||0 0 3 1 | |15 23 9 1| |31 15 7 3 1 ||0 15 7 3 1||0 0 7 3 1| |... | |... ||... ||... | |... | - _Peter Bala_, Jul 22 2014
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, J. Int. Seq. 8 (2005), #05.3.7.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Programs
-
Maple
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
Mathematica
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - (3 + y) x + 2 x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Formula
Riordan array M(n, k): (1/(1-3z+2z^2), z/(1-3z+2z^2)). Leftmost column M(n, 0) is the Mersenne numbers A000225, first column is A045618, second column is A055582, row sum is A007070 and diagonal sum is even-indexed Fibonacci numbers A001906.
T(n,k) = Sum_{j=0..n} C(j+k,k)C(n-j,k)2^(n-j-k). - Paul Barry, Feb 13 2006
From Philippe Deléham, Mar 19 2012: (Start)
G.f.: 1/(1-(3+y)*x+2*x^2).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) -2*T(n-2,k), T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000225(n+1), A007070(n), A107839(n), A154244(n), A186446(n), A190975(n+1), A190979(n+1), A190869(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7 respectively. (End)
Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (2^(i+1) - 1)*T(n-i,k). - Peter Bala, Jul 22 2014
From Peter Bala, Oct 07 2019: (Start)
Recurrence for row polynomials: R(n,x) = (3 + x)*R(n-1,x) - 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 3 + x.
The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 + 2*x/(1 + ... + x/(1 + 2*x/(1)))) (with 2*n partial numerators). Cf. A116414. (End)
A058395 Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.
1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0
Comments
Examples
The array T(n, k) starts: [0] 1, 0, 3, 0, 6, 0, 10, 0, 15, 0, ... [1] 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ... [2] 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ... [3] 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... [4] 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ... [5] 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ... [6] 1, 6, 18, 38, 66, 102, 146, 198, 258, 326, ... [7] 1, 7, 24, 56, 104, 168, 248, 344, 456, 584, ... [8] 1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, ... [9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
Crossrefs
Programs
-
Maple
gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20): seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
-
Mathematica
T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8]; T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]]; Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)
Formula
T(n, k) = T(n-1, k-1) + T(n, k-1) with T(0, k) = 1, T(2*n, 0) = T(n, 3) and T(2*n + 1, 0) = 0. Coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^3.
A055583 Seventh column of triangle A055252.
1, 10, 58, 256, 955, 3178, 9740, 28064, 77093, 203930, 523262, 1309520, 3209871, 7731642, 18348240, 42989520, 99612345, 228586890, 520090690, 1174401760, 2634019171, 5872021450, 13019115028, 28722588736, 63082326605
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3295
- Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (10,-42,96,-129,102,-44,8).
Programs
-
Mathematica
CoefficientList[Series[1/(((1 - 2 x)^3) (1 - x)^4), {x, 0, 24}], x] (* Michael De Vlieger, Apr 24 2020 *) LinearRecurrence[{10,-42,96,-129,102,-44,8},{1,10,58,256,955,3178,9740},30] (* Harvey P. Dale, Nov 06 2022 *)
A055586 Sixth column of triangle A055584.
1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, 278546, 749587, 1966100, 5046293, 12714006, 31522839, 77070360, 186122265, 444596250, 1051721755, 2466250780, 5737807901, 13254000670, 30417092639, 69390565408
Offset: 0
Links
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index entries for linear recurrences with constant coefficients, signature (10,-41,88,-104,64,-16).
Programs
-
Mathematica
CoefficientList[Series[1/(((1-x)^2)(1-2x)^4),{x,0,30}],x] (* or *) LinearRecurrence[{10,-41,88,-104,64,-16},{1,10,59,268,1037,3598},30] (* Harvey P. Dale, Jul 31 2025 *)
-
PARI
Vec(1/(((1-x)^2)*(1-2*x)^4) + O(x^40)) \\ Michel Marcus, Dec 11 2015
Formula
G.f.: 1/(((1-x)^2)*(1-2*x)^4).
a(n) = A055584(n+5, 5).
a(n) = Sum_{j=0..n-1} a(j) + A055582(n) for n >= 1.
E.g.f.: exp(x)*(x + 9) + 8*exp(2*x)*(2*x^3 + 3*x^2 + 6*x - 3)/3. - Stefano Spezia, Sep 24 2024
A206306 Riordan array (1, x/(1-3*x+2*x^2)).
1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0
Comments
The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022
Examples
Triangle begins: 1; 0, 1; 0, 3, 1; 0, 7, 6, 1; 0, 15, 23, 9, 1; 0, 31, 72, 48, 12, 1; 0, 63, 201, 198, 82, 15, 1; 0, 127, 522, 699, 420, 125, 18, 1; 0, 255, 1291, 2223, 1795, 765, 177, 21, 1; 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1; 0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A206306 if k lt 0 or k gt n then return 0; elif k eq n then return 1; elif k eq 0 then return 0; else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
-
Maple
# Uses function PMatrix from A357368. PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
-
SageMath
def T(n,k): # T = A206306 if (k<0 or k>n): return 0 elif (k==n): return 1 elif (k==0): return 0 else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022
Formula
Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)
Comments