cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055612 a(n) = Product_{m=1..n} (binomial(n,m)+1).

Original entry on oeis.org

1, 2, 6, 32, 350, 8712, 526848, 80289792, 31428168318, 31906468445000, 84447578671097576, 584524457418427932672, 10604795873304968964262400, 505245441738743508813986275328, 63320582170435750241601032951040000, 20908669294849228879861552351685432573952
Offset: 0

Views

Author

N. J. A. Sloane, Jun 03 2000

Keywords

References

  • V. K. Kharchenko, Fixed rings and noncommutative invariant theory, pp. 359-398 of M. Hazewinkel, ed., Handbook of Algebra, Vol. 2, Elsevier, 2000.

Crossrefs

Programs

  • Haskell
    a055612 = product . map (+ 1) . tail . a007318_row
    -- Reinhard Zumkeller, Jan 31 2015
    
  • Mathematica
    Array[Product[1 + Binomial[#, m], {m, #}] &, 16, 0] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    a(n) = prod(m=1, n, 1+binomial(n, m)); \\ Michel Marcus, Oct 30 2017

Formula

a(n) = A129824(n) / 2. - Reinhard Zumkeller, Jan 31 2015