A055623 First occurrence of run of primes congruent to 1 mod 4 of exactly length n.
5, 13, 89, 389, 2593, 12401, 77069, 262897, 11593, 373649, 766261, 3358169, 12204889, 18256561, 23048897, 12270077, 297387757, 310523021, 297779117, 3670889597, 5344989829, 1481666377, 2572421893, 1113443017, 121117598053, 84676452781, 790457451349, 3498519134533, 689101181569, 3289884073409
Offset: 1
Keywords
Examples
a(3)=89 because here n=3 and 89 is the start of a run of exactly 3 consecutive primes congruent to 1 mod 4. n=3: 83, 89, 97, 101, 103 are congruent to 3, 1, 1, 1, 3 modulo 4. So a(3) = 89. a(33) = 3278744415797. - _Jens Kruse Andersen_, May 29 2006
Links
- J. K. Andersen, Consecutive Congruent Primes.
- Carlos Rivera's Prime Puzzles and Problems Connection, Puzzle 256, Jack Brennen old records
Programs
-
Mathematica
nn = 10; t = Table[0, {nn}]; found = 0; p = 1; cnt = 0; While[found < nn, p = NextPrime[p]; If[Mod[p, 4] == 1, cnt++, If[0 < cnt <= nn && t[[cnt]] == 0, t[[cnt]] = NextPrime[p, -cnt]; found++]; cnt = 0]]; t (* T. D. Noe, Jun 21 2013 *)
Formula
Compute sequence of primes congruent to 1 mod 4. When first occurrence of run of exactly length n is found, add first prime to sequence.
Extensions
Corrected and extended by Reiner Martin, Jul 18 2001
More terms from Jens Kruse Andersen, May 29 2006
Edited by N. J. A. Sloane, Jun 01 2006
Comments