A055755 4n^2+1, 2n^2+1, 2n^2-1 are all prime.
3, 42, 45, 102, 132, 153, 237, 297, 375, 468, 570, 990, 2085, 2478, 2712, 3240, 4743, 5382, 5517, 6828, 7962, 8970, 8982, 9033, 9570, 9612, 9747, 9813, 10692, 12363, 12453, 12468, 12750, 13902, 14763, 14925, 15750, 16365, 17118, 17688, 19527
Offset: 1
Examples
42 is included because 4*42^2+1, 2*42^2+1, 2*42^2-1 are all prime numbers.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A001912.
Programs
-
Maple
with(numtheory): for n from 1 to 50000 do if isprime(4*n^2+1) and isprime(2*n^2+1) and isprime(2*n^2-1) then printf(`%d,`,n) fi: od:
-
Mathematica
a={};Do[If[PrimeQ[4n^2+1] && PrimeQ[2n^2+1] && PrimeQ[2n^2-1], AppendTo[a,n]], {n,10000}]; a (* Peter J. C. Moses, Apr 02 2013 *)
Extensions
More terms from James Sellers, Jul 13 2000