cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055755 4n^2+1, 2n^2+1, 2n^2-1 are all prime.

Original entry on oeis.org

3, 42, 45, 102, 132, 153, 237, 297, 375, 468, 570, 990, 2085, 2478, 2712, 3240, 4743, 5382, 5517, 6828, 7962, 8970, 8982, 9033, 9570, 9612, 9747, 9813, 10692, 12363, 12453, 12468, 12750, 13902, 14763, 14925, 15750, 16365, 17118, 17688, 19527
Offset: 1

Views

Author

Harvey P. Dale, Jul 12 2000

Keywords

Examples

			42 is included because 4*42^2+1, 2*42^2+1, 2*42^2-1 are all prime numbers.
		

Crossrefs

Cf. A001912.

Programs

  • Maple
    with(numtheory): for n from 1 to 50000 do if isprime(4*n^2+1) and isprime(2*n^2+1) and isprime(2*n^2-1) then printf(`%d,`,n) fi: od:
  • Mathematica
    a={};Do[If[PrimeQ[4n^2+1] && PrimeQ[2n^2+1] && PrimeQ[2n^2-1], AppendTo[a,n]], {n,10000}]; a (* Peter J. C. Moses, Apr 02 2013 *)

Extensions

More terms from James Sellers, Jul 13 2000