cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055802 a(n) = T(n,n-2), array T as in A055801.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 7, 10, 11, 15, 16, 21, 22, 28, 29, 36, 37, 45, 46, 55, 56, 66, 67, 78, 79, 91, 92, 105, 106, 120, 121, 136, 137, 153, 154, 171, 172, 190, 191, 210, 211, 231, 232, 253, 254, 276, 277, 300, 301, 325, 326, 351, 352, 378, 379, 406, 407, 435
Offset: 2

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

For n>2, a(n)+a(n+1) seems to be A002620(n+1)+1.

Crossrefs

Programs

  • GAP
    Concatenation([1], List([3..65], n-> (2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16 )); # G. C. Greubel, Jan 23 2020
  • Magma
    [1] cat [(2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16: n in [3..65]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    seq( `if`(n==2, 1, (2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16), n=2..65); # G. C. Greubel, Jan 23 2020
  • Mathematica
    CoefficientList[Series[(1 -2*x^2 +x^3 +2*x^4 -x^5)/((1-x)^3*(1+x)^2), {x,0,65}], x] (* Wesley Ivan Hurt, Jan 20 2017 *)
    Table[If[n==2,1, (2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16], {n,2,65}] (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    Vec(x^2*(1-2*x^2+x^3+2*x^4-x^5)/((1-x)^3*(1+x)^2) + O(x^65)) \\ Charles R Greathouse IV, Feb 03 2013
    
  • PARI
    vector(65, n, my(m=n+1); if(m==2, 1, (2*m^2 -6*m +11 +(-1)^m*(2*m -11))/16)) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    [1]+[(2*n^2 -6*n +11 +(-1)^n*(2*n -11))/16 for n in (3..65)] # G. C. Greubel, Jan 23 2020
    

Formula

G.f.: x^2*(1 -2*x^2 +x^3 +2*x^4 -x^5)/((1-x)^3*(1+x)^2).
a(n) = A114220(n-1), n>=3. - R. J. Mathar, Feb 03 2013
From Colin Barker, Jan 27 2016: (Start)
a(n) = (2*n^2 +2*(-1)^n*n -6*n -11*(-1)^n +11)/16 for n>2.
a(n) = (n^2 - 2*n)/8 for n>2 and even.
a(n) = (n^2 - 4*n + 11)/8 for n odd. (End)
E.g.f.: (4*x*(x-2) + x*(x-3)*cosh(x) + (x^2 -x +11)*sinh(x))/8. - G. C. Greubel, Jan 23 2020