cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055808 a(n) and floor(a(n)/4) are both squares; i.e., squares that remain squares when written in base 4 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100
Offset: 0

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Let A(x) = (1 + k*x + (k-1)*x^2). Then the coefficients of (A(x))^2 sum to 4*k^2, where k = (n - 1). Examples: if k = 3 we have (1 + 3*x + 2*x^2)^2 = (1 + 6*x + 13x^2 + 12*x^3 + 4*x^4), and ( 1 + 6 + 13 + 12 + 4) = 36. If k = 4 we have (1 + 4*x + 3*x^2)^2 = (1 + 8*x + 22*x^2 + 24*x^3 + 9*x^4), and (1 + 8 + 22 + 24 + 9) = 64 = a(5). - Gary W. Adamson, Aug 02 2015
For n>0, a(n) are the Engel expansion of A197036. - Benedict W. J. Irwin, Dec 15 2016

Examples

			36 is in the sequence because 36 = 6^2 = 210 base 3 and 21 base 4 = 9 = 3^2.
		

Crossrefs

Cf. A023110. Essentially A016742 with one addition.

Programs

  • Magma
    [Floor((2*n^2)/(1 + n))^2: n in [0..60]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{0, 1}, LinearRecurrence[{3, -3, 1}, {4, 16, 36}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
  • PARI
    concat(0, Vec(x*(x^3-7*x^2-x-1)/(x-1)^3 + O(x^100))) \\ Colin Barker, Sep 15 2014
    
  • PARI
    is_ok(n)=issquare(n) && issquare(floor(n/4));
    first(m)=my(v=vector(m),r=0);for(i=1,m,while(!is_ok(r),r++);v[i]=r;r++;);v; /* Anders Hellström, Aug 08 2015 */
    

Formula

a(n) = A004275(n)^2. - M. F. Hasler, Jan 16 2012
a(n) = 4*(-1+n)^2 for n>1; a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4; G.f.: x*(x^3-7*x^2-x-1) / (x-1)^3. - Colin Barker, Sep 15 2014