A055815 a(n) = T(2*n+3,n), array T as in A055807.
1, 15, 80, 432, 2352, 12896, 71136, 394400, 2196128, 12273648, 68811184, 386838480, 2179890000, 12309739968, 69641542848, 394643939904, 2239678552640, 12727572969680, 72415319422992, 412470467298032
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
Crossrefs
Programs
-
Maple
T:= proc(i, j) option remember; if j=0 then 1 elif i=0 then 0 else add(add(T(h,m), m=0..j), h=0..i-1) fi; end: seq(T(n+3, n), n=0..20); # G. C. Greubel, Jan 23 2020
-
Mathematica
T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]]; Table[T[n+3, n], {n,0,20}] (* G. C. Greubel, Jan 23 2020 *)
-
Sage
@CachedFunction def T(i, j): if (j==0): return 1 elif (i==0): return 0 else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1)) [T(n+3, n) for n in (0..20)] # G. C. Greubel, Jan 23 2020
Formula
a(n) = (n+3)*hypergeom([-n-2, n], [2], -1) = Sum_{s=1..n+3} binomial(n+3,s) * binomial(s+n-2,n-1) for n >= 1. - Petros Hadjicostas, Feb 13 2021