A055833 T(n,n-6), where T is the array in A055830.
13, 58, 162, 361, 701, 1239, 2044, 3198, 4797, 6952, 9790, 13455, 18109, 23933, 31128, 39916, 50541, 63270, 78394, 96229, 117117, 141427, 169556, 201930, 239005, 281268, 329238, 383467, 444541, 513081
Offset: 6
Links
- G. C. Greubel, Table of n, a(n) for n = 6..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A055830.
Programs
-
GAP
List([6..40], n-> (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 ); # G. C. Greubel, Jan 21 2020
-
Magma
[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120: n in [6..40]]; // G. C. Greubel, Jan 21 2020
-
Maple
seq( (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, n=6..40); # G. C. Greubel, Jan 21 2020
-
Mathematica
Table[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, {n,6,40}] (* G. C. Greubel, Jan 21 2020 *)
-
PARI
a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120; \\ G. C. Greubel, Jan 21 2020
-
Sage
[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 for n in (6..40)] # G. C. Greubel, Jan 21 2020
Formula
From R. J. Mathar, Mar 13 2016: (Start)
G.f.: x^6*(13 -20*x +9*x^2 -x^3)/(1-x)^6.
a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120. (End)
E.g.f.: (3120 + 1560*x + 180*x^2 - 20*x^3 - (3120 - 1560*x + 180*x^2 + 60*x^3 - 20*x^4 - x^5)*exp(x))/120. - G. C. Greubel, Jan 21 2020