cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055835 T(2n+1,n), where T is the array in A055830.

Original entry on oeis.org

1, 3, 12, 54, 255, 1239, 6132, 30744, 155628, 793650, 4071210, 20984340, 108590118, 563816526, 2935798680, 15324533448, 80164934919, 420151515255, 2205762626010, 11597513662350, 61060181223195, 321870918101535
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 3*Sum([0..n], k-> Binomial(n+k-1, n) *Binomial(k, n-k) ))); # G. C. Greubel, Jan 21 2020
  • Magma
    [1] cat [3*(&+[Binomial(n+k-1, n)*Binomial(k, n-k): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    seq( `if`(n=0, 1, 3*add(binomial(n+k-1, n)*binomial(k, n-k), k=0..n)), n=0..30); # G. C. Greubel, Jan 21 2020
  • Mathematica
    Table[If[n==0, 1, 3*Sum[Binomial[k, n-k]*Binomial[n+k-1, n], {k,0,n}]], {n,0,30}] (* G. C. Greubel, Jan 21 2020 *)
  • Maxima
    a(n):=sum((sum(binomial(i,k)*binomial(i+1,n-i),i,k,n))*binomial(n,k), k,0,n); /* Vladimir Kruchinin, Mar 01 2014 */
    
  • PARI
    a(n) = if(n==0, 1, 3*sum(k=0, n, binomial(n+k-1, n)*binomial(k, n-k)) ); \\ Joerg Arndt, Mar 01 2014
    
  • Sage
    [1]+[3*sum(binomial(n+k-1,n)*binomial(k,n-k) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Jan 21 2020
    

Formula

a(n) = 3*A055834(n) for n>=1. - Philippe Deléham, Jan 25 2014
a(n) = Sum_{k=0..n} Sum_{i=k..n} binomial(i,k)*binomial(i+1,n-i)*binomial(n,k). - Vladimir Kruchinin, Mar 01 2014