cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055837 T(2n+3,n), where T is the array in A055830.

Original entry on oeis.org

3, 15, 73, 361, 1806, 9122, 46425, 237721, 1223365, 6321965, 32784830, 170528190, 889291352, 4648068192, 24342384337, 127707864849, 671047979300, 3531026714720, 18603737992455, 98129545962855, 518149580437560
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Cf. A055830.

Programs

  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then fibonacci(n+1)
        elif n=1 and k=1 then 0
        else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
          fi; end:
    seq(T(2*n+3, n), n=0..30); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[2*n+3, n], {n,0,30}] (* G. C. Greubel, Jan 21 2020 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return fibonacci(n+1)
        elif (n==1 and k==1): return 0
        else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
    [T(2*n+3, n) for n in (0..30)] # G. C. Greubel, Jan 21 2020

Formula

Conjecture: 5*n*(n+2)*(11*n-4)*a(n) +(-242*n^3-330*n^2+29*n+42)*a(n-1) -3*(3*n-1)*(11*n+7)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Mar 13 2016