A055852 Convolution of A055589 with A011782.
0, 1, 7, 34, 138, 501, 1683, 5336, 16172, 47264, 134048, 370688, 1003136, 2664192, 6960384, 17922048, 45552640, 114442240, 284508160, 700579840, 1710161920, 4141416448, 9955639296, 23770693632, 56400543744, 133041225728
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-60,160,-240,192,-64).
Programs
-
GAP
a:=[1,7,34,138,501,1683];; for n in [7..30] do a[n]:=12*a[n-1] -60*a[n-2] +160*a[n-3] -240*a[n-4] +192*a[n-5] -64*a[n-6]; od; Concatenation([0], a); # G. C. Greubel, Jan 16 2020
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^5/(1-2*x)^6 )); // G. C. Greubel, Jan 16 2020 -
Maple
seq(coeff(series(x*(1-x)^5/(1-2*x)^6, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
Mathematica
CoefficientList[Series[x*(1-x)^5/(1-2*x)^6, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^5/(1-2*x)^6)) \\ G. C. Greubel, Jan 16 2020
-
Sage
def A055852_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1-x)^5/(1-2*x)^6 ).list() A055852_list(30) # G. C. Greubel, Jan 16 2020
Formula
a(n) = T(n, 5) = A055587(n+5, 6).
G.f.: x*(1-x)^5/(1-2*x)^6.
Comments