cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055852 Convolution of A055589 with A011782.

Original entry on oeis.org

0, 1, 7, 34, 138, 501, 1683, 5336, 16172, 47264, 134048, 370688, 1003136, 2664192, 6960384, 17922048, 45552640, 114442240, 284508160, 700579840, 1710161920, 4141416448, 9955639296, 23770693632, 56400543744, 133041225728
Offset: 0

Views

Author

Wolfdieter Lang May 30 2000

Keywords

Comments

Seventh column of triangle A055587.
T(n,5) of array T as in A049600.

Crossrefs

Programs

  • GAP
    a:=[1,7,34,138,501,1683];; for n in [7..30] do a[n]:=12*a[n-1] -60*a[n-2] +160*a[n-3] -240*a[n-4] +192*a[n-5] -64*a[n-6]; od; Concatenation([0], a); # G. C. Greubel, Jan 16 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^5/(1-2*x)^6 )); // G. C. Greubel, Jan 16 2020
    
  • Maple
    seq(coeff(series(x*(1-x)^5/(1-2*x)^6, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    CoefficientList[Series[x*(1-x)^5/(1-2*x)^6, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^5/(1-2*x)^6)) \\ G. C. Greubel, Jan 16 2020
    
  • Sage
    def A055852_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x)^5/(1-2*x)^6 ).list()
    A055852_list(30) # G. C. Greubel, Jan 16 2020
    

Formula

a(n) = T(n, 5) = A055587(n+5, 6).
G.f.: x*(1-x)^5/(1-2*x)^6.