cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055856 Susceptibility series H_4 for 2-dimensional Ising model (divided by 2).

Original entry on oeis.org

1, 16, 90, 328, 888, 2016, 3994, 7212, 12070, 19112, 28846, 41976, 59116, 81132, 108738, 142972, 184638, 234952, 294806, 365596, 448296, 544492, 655230, 782292, 926794, 1090716, 1275238, 1482548, 1713880, 1971636, 2257102, 2572896, 2920350, 3302308, 3720138
Offset: 0

Views

Author

Wolfdieter Lang, Jun 07 2000

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1-x^3)*(1-x^2)^3*(1-x)) )); // G. C. Greubel, Jan 16 2020
    
  • Maple
    1,seq( simplify( (4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*ChebyshevT(n, -1/2))/1728 ), n=1..40); # G. C. Greubel, Jan 16 2020
  • Mathematica
    Join[{1}, Table[(4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*ChebyshevT[n, -1/2])/1728, {n,40}]] (* G. C. Greubel, Jan 16 2020 *)
    LinearRecurrence[{1,3,-2,-4,0,4,2,-3,-1,1},{1,16,90,328,888,2016,3994,7212,12070,19112,28846},40] (* Harvey P. Dale, Jul 24 2021 *)
  • PARI
    Vec((1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1-x^3)*(1-x)^4*(1+x)^3) + O(x^40)) \\ Colin Barker, Dec 10 2016
    
  • Sage
    [1]+[(4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*chebyshev_T(n, -1/2))/1728 for n in (1..40)] # G. C. Greubel, Jan 16 2020

Formula

G.f.: (1 + 15*x + 71*x^2 + 192*x^3 + 326*x^4 + 388*x^5 + 326*x^6 + 192*x^7 + 71*x^8 + 15*x^9 + x^10)/((1-x^3)*(1-x)^4*(1+x)^3).
a(n) = (4794*n^4 + 19194*n^2 + 3349 - 81*(-1)^n*(2*n^2 + 5) + 512*ChebyshevT(n, -1/2))/1728, for n >= 1, with a(0) = 1. - G. C. Greubel, Jan 16 2020