A055896 Exponential transform of Stirling2 triangle A008277.
1, 1, 2, 1, 6, 5, 1, 14, 30, 15, 1, 30, 125, 150, 52, 1, 62, 450, 975, 780, 203, 1, 126, 1505, 5250, 7280, 4263, 877, 1, 254, 4830, 25515, 54600, 53998, 24556, 4140, 1, 510, 15125, 116550, 361452, 537138, 405174, 149040, 21147, 1, 1022, 46650
Offset: 1
Examples
Triangle begins 1; 1, 2; 1, 6, 5; 1, 14, 30, 15; 1, 30, 125, 150, 52; ...
Links
- N. J. A. Sloane, Transforms
Crossrefs
Row sums give A000258.
Programs
-
Mathematica
nn=8; a=Exp[x]-1; Drop[Map[Select[#, #>0&]&, Range[0,nn]! CoefficientList[Series[Exp[Exp[y a]-1], {x,0,nn}], {x,y}]], 1]//Grid (* Geoffrey Critzer, Sep 22 2013 *)
Formula
E.g.f.: A(x, y) = exp(exp(y*exp(x)-y)-1).