cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000258 Expansion of e.g.f. exp(exp(exp(x)-1)-1).

Original entry on oeis.org

1, 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, 16733779, 188378402, 2276423485, 29367807524, 402577243425, 5840190914957, 89345001017415, 1436904211547895, 24227076487779802, 427187837301557598, 7859930038606521508, 150601795280158255827
Offset: 0

Views

Author

Keywords

Comments

Number of 3-level labeled rooted trees with n leaves. - Christian G. Bower, Aug 15 1998
Number of pairs of set partitions (d,d') of [n] such that d is finer than d'. - A. Joseph Kennedy (kennedy_2001in(AT)yahoo.co.in), Feb 05 2006
In the Comm. Algebra paper cited, I introduce a sequence of algebras called 'class partition algebras' with this sequence as dimensions. The algebras are the centralizers of wreath product in combinatorial representation theory. - A. Joseph Kennedy (kennedy_2001in(AT)yahoo.co.in), Feb 17 2008
a(n) is the number of ways to partition {1,2,...,n} and then partition each cell (block) into subcells.

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 60*x^4 + 358*x^5 + 2471*x^6 + 19302*x^7 + ...
		

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.4.

Crossrefs

Row sums of (Stirling2)^2 triangle A130191.
Column k=2 of A144150.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(Exp(x)-1)-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020
  • Maple
    with(combinat, bell, stirling2): seq(add(stirling2(n,k)*(bell(k)), k=0..n),n=0..30);
    with(combstruct); SetSetSetL := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},labeled];
    # alternative Maple program:
    b:= proc(n, t) option remember; `if`(n=0 or t=0, 1, add(
           b(n-j, t)*b(j, t-1)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 02 2021
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[Exp[Exp[x] - 1] - 1], {x, 0, nn}], x]
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp[ Exp[x] - 1] - 1] , {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *)
    a[n_] := Sum[StirlingS2[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 06 2016 *)
    Table[Sum[BellY[n, k, BellB[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • Maxima
    makelist(sum(stirling2(n,k)*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    

Formula

a(n) = |A039811(n, 1)| (first column of triangle).
a(n) = Sum_{k=0..n} Stirling2(n, k)*Bell(k). - Detlef Pauly (dettodet(AT)yahoo.de), Jun 06 2002
Representation as an infinite series (Dobinski-type formula), in Maple notation: a(n)=exp(exp(-1)-1)*sum(evalf(sum(p!*stirling2(k, p)*exp(-p), p=1..k))*k^n/k!, k=0..infinity), n=1, 2, ... . - Karol A. Penson, Nov 28 2003
a(n) = Sum_{k=0..n} A055896(n,k). - R. J. Mathar, Apr 15 2008
G.f.: Sum_{j>=0} Bell(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019

A079005 Exponential transform of unsigned Lah-triangle |A008297(n,k)|.

Original entry on oeis.org

1, 2, 2, 6, 12, 5, 24, 72, 60, 15, 120, 480, 600, 300, 52, 720, 3600, 6000, 4500, 1560, 203, 5040, 30240, 63000, 63000, 32760, 8526, 877, 40320, 282240, 705600, 882000, 611520, 238728, 49112, 4140, 362880, 2903040, 8467200, 12700800, 11007360
Offset: 1

Views

Author

Vladeta Jovovic, Feb 01 2003

Keywords

Examples

			1; 2,2; 6,12,5; 24,72,60,15; 120,480,600,300,52; ...
		

Crossrefs

Formula

E.g.f.: exp(exp(x*y/(1-x))-1). a(n, k) = n!/k! * binomial(n-1, k-1) * bell(k) = |A008297(n, k)| * A000110(k).
Showing 1-2 of 2 results.