cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055898 Triangle: Number of directed site animals on a square lattice with n+1 total sites and k sites supported in one particular way.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 39, 31, 9, 1, 1, 21, 81, 101, 51, 11, 1, 1, 28, 150, 272, 209, 76, 13, 1, 1, 36, 256, 636, 696, 376, 106, 15, 1, 1, 45, 410, 1340, 1980, 1496, 615, 141, 17, 1, 1, 55, 625, 2600, 5000, 5032, 2850, 939, 181, 19, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jun 13 2000

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 6, 5, 1;
  1,10,16, 7, 1;
  ...
		

Crossrefs

Row sums give A005773. Columns 0-8: A000012, A000217, A011863(n-1), A055899-A055904. Cf. A055905, A055907.

Programs

  • Mathematica
    nmax = 10;
    A[x_, y_] = (1/2) x ((1 - (4 x/((1 + x) (1 + x - x y))))^(-1/2) - 1);
    g = A[x, y] + O[x]^(nmax+3);
    row[n_] := CoefficientList[Coefficient[g, x, n+2], y];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)
  • Maxima
    T(n,m):=sum(binomial(n-k,m)*sum(binomial(n-m-k,i)*(-1)^(n+m-i)*binomial(k+i,k)*binomial(2*i+1,i+1),i,0,n-m-k),k,0,n); /* Vladimir Kruchinin, Jan 26 2022 */

Formula

G.f.: A(x, y)=(1/2x)((1-(4x/((1+x)(1+x-xy))))^(-1/2) - 1).
T(n,m) = Sum_{k=0..n} C(n-k,m)*Sum_{i=0..n-m-k} (-1)^(n+m-i) *C(n-m-k,i) *C(k+i,k) *C(2*i+1,i+1). - Vladimir Kruchinin, Jan 26 2022

A247644 Triangle formed from the odd-numbered rows of A088855.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1, 1, 7, 49, 147, 441, 735, 1225, 1225, 1225, 735, 441, 147, 49, 7, 1, 1, 8, 64, 224, 784, 1568, 3136, 3920, 4900, 3920, 3136, 1568, 784, 224, 64, 8, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2014

Keywords

Comments

The rows give the coefficients in the numerator polynomials of the o.g.f.s for the columns of triangle A055898. - Georg Fischer, Aug 16 2021
They also occur (with a factor 2*x) in the numerator polynomials of the difference A157052-A157074. - Georg Fischer, Sep 27 2021

Examples

			Triangle begins:
1,
1,1,1,
1,2,4,2,1,
1,3,9,9,9,3,1,
1,4,16,24,36,24,16,4,1,
1,5,25,50,100,100,100,50,25,5,1,
1,6,36,90,225,300,400,300,225,90,36,6,1,
1,7,49,147,441,735,1225,1225,1225,735,441,147,49,7,1,
1,8,64,224,784,1568,3136,3920,4900,3920,3136,1568,784,224,64,8,1,
...
		

Crossrefs

Cf. A088459 (even numbered rows of A088855).

Programs

  • Mathematica
    row[n_] := CoefficientList[Sum[Binomial[n, k]^2 *x^(2*k), {k, 0, n}] + Sum[Binomial[n, k]*Binomial[n, k - 1]* x^(2*k - 1), {k, 0, n}], x];
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2018 *)
  • PARI
    T(n, k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ A088855
    row(n) = vector(2*n-1, k, T(2*n-1, k)); \\ Michel Marcus, Sep 27 2021

Extensions

Row n=8 corrected by Jean-François Alcover, Jun 07 2018
Offset changed to 1 by Georg Fischer, Sep 27 2021
Showing 1-2 of 2 results.