cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A055915 Column 9 of triangle A055907.

Original entry on oeis.org

1, 18, 164, 1050, 5367, 23232, 88125, 299992, 932849, 2685747, 7235237, 18392853, 44427807, 102552852, 227298680, 485679518, 1003915611, 2013360324, 3927664296, 7469755903, 13876848040, 25225619858, 44939663514, 78569415198, 134974052794, 228088973049
Offset: 9

Views

Author

Christian G. Bower, Jun 22 2000

Keywords

Formula

G.f.: x^9*B(x)/((1-x)^19*(1+x)^9*(1+x^2)^8*(1+x^2+x^4)^6*(1+x^4)^4*(1+x^2+x^4+x^6+x^8)^2) where B(x) is g.f. of A055918.

Extensions

a(31) corrected and more terms from Sean A. Irvine, Apr 09 2022

A055913 Column 7 of triangle A055907.

Original entry on oeis.org

1, 14, 100, 511, 2116, 7501, 23527, 66834, 174953, 427486, 984654, 2154809, 4508722, 9067082, 17600002, 33094234, 60466665, 107632267, 187074805, 318119850, 530176267, 867294295, 1394495598, 2206460931, 3439326144
Offset: 7

Views

Author

Christian G. Bower, Jun 22 2000

Keywords

Formula

G.f.: x^7*B(x)/((1-x)^15*(1+x)^7*(1+x^2)^6*(1+x^2+x^4)^4*(1+x^4)^2) where B(x) is g.f. of A055916.

A055914 Column 8 of triangle A055907.

Original entry on oeis.org

1, 16, 130, 748, 3459, 13612, 47141, 147116, 421040, 1119827, 2796446, 6610818, 14893276, 32150509, 66807075, 134139807, 261101457, 494074770, 911085320, 1640685080, 2890653798, 4990940719, 8456978339, 14081784408, 23068258050
Offset: 8

Views

Author

Christian G. Bower, Jun 22 2000

Keywords

Formula

G.f.: x^8*B(x)/((1-x)^17*(1+x)^8*(1+x^2)^7*(1+x^2+x^4)^5*(1+x^4)^3*(1+x^2+x^4+x^6+x^8)) where B(x) is g.f. of A055917.

A055908 Column 2 of triangle A055907.

Original entry on oeis.org

1, 4, 10, 21, 39, 67, 107, 163, 238, 337, 463, 622, 818, 1058, 1346, 1690, 2095, 2570, 3120, 3755, 4481, 5309, 6245, 7301, 8484, 9807, 11277, 12908, 14708, 16692, 18868, 21252, 23853, 26688, 29766, 33105, 36715, 40615, 44815, 49335, 54186
Offset: 2

Views

Author

Christian G. Bower, Jun 14 2000

Keywords

Crossrefs

Cf. A055907.

Formula

G.f.: x^2*(1 + x + x^3)/((1 - x)^5*(1+x)^2*(1 + x^2)).

A055909 Column 3 of triangle A055907.

Original entry on oeis.org

1, 6, 20, 53, 121, 249, 471, 836, 1409, 2276, 3544, 5350, 7862, 11286, 15866, 21896, 29721, 39746, 52436, 68331, 88047, 112287, 141841, 177604, 220577, 271880, 332752, 404572, 488860, 587292, 701700, 834096, 986673, 1161822, 1362132
Offset: 3

Views

Author

Christian G. Bower, Jun 14 2000

Keywords

Crossrefs

Cf. A055907.

Formula

G.f.: x^3*(1+x)*(1+x+3x^3-x^4+x^5) / ((1-x)^7*(1+x)^3*(1+x^2)^2).

A055910 Column 4 of triangle A055907.

Original entry on oeis.org

1, 8, 36, 128, 388, 1050, 2601, 6013, 13141, 27416, 55012, 106816, 201685, 371828, 671630, 1192093, 2084360, 3597991, 6143128, 10391369, 17439285, 29073358, 48199071, 79535657, 130740732, 214230558, 350125952, 571019573, 929690344
Offset: 4

Views

Author

Christian G. Bower, Jun 14 2000

Keywords

Crossrefs

Cf. A055907.

Formula

G.f.: x^4*(1+3x+4x^2+10x^3+12x^4+14x^5+16x^6+13x^7+14x^8+7x^9+6x^10+4x^11+x^13)/ ((1-x)^9*(1+x)^4*(1+x^2)^3*(1-x-x^2)*(1+x+x^2)).

A055911 Column 5 of triangle A055907.

Original entry on oeis.org

1, 10, 56, 240, 854, 2654, 7412, 18974, 45173, 101074, 214361, 433731, 841921, 1574765, 2849215, 5002411, 8546675, 14243335, 23202995, 37016099, 57925111, 89043169, 134635403, 200468817, 294253144, 426179565, 609587498, 861767228
Offset: 5

Views

Author

Christian G. Bower, Jun 15 2000

Keywords

Comments

The given generating function does not appear to generate the sequence. - Sean A. Irvine, Apr 09 2022

Crossrefs

Cf. A055907.

Formula

G.f.: x^5*(1 + 4x + 8x^2 + 22x^3 + 37x^4 + 56x^5 + 88x^6 + 98x^7 + 137x^8 + 118x^9 + 145x^10 + 113x^11 + 104x^12 + 79x^13 + 50x^14 + 40x^15 + 17x^16 + 10x^17 + 6x^18 + x^20) / ((1 - x)^11 * (1 + x)^5 * (1 + x^2)^4 * (1 + x^2 + x^4)^2).

A055912 Column 6 of triangle A055907.

Original entry on oeis.org

1, 12, 74, 331, 1212, 3829, 10778, 27651, 65745, 146663, 309831, 624423, 1207701, 2252494, 4067393, 7134576, 12191298, 20342987, 33217622, 53174235, 83580380, 129177701, 196557754, 294776792, 436141322, 637204826, 920020667
Offset: 6

Views

Author

Christian G. Bower, Jun 22 2000

Keywords

Crossrefs

Cf. A055907.

Formula

G.f.: x^6(1 + 5x + 13x^2 + 40x^3 + 85x^4 + 160x^5 + 297x^6 + 453x^7 + 711x^8 + 956x^9 + 1276x^10 + 1614x^11 + 1798x^12 + 2192x^13 + 2064x^14 + 2446x^15 + 1949x^16 + 2220x^17 + 1546x^18 + 1642x^19 + 1011x^20 + 959x^21 + 558x^22 + 427x^23 + 249x^24 + 135x^25 + 85x^26 + 32x^27 + 15x^28 + 8x^29 + x^31)/((1 - x)^13(1 + x)^6(1 + x^2)^5(1 + x^2 + x^4)^3(1 + x^4)). [See column t6,m in table 1 p. 12 of Guttmann and Conway.]

A055898 Triangle: Number of directed site animals on a square lattice with n+1 total sites and k sites supported in one particular way.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 39, 31, 9, 1, 1, 21, 81, 101, 51, 11, 1, 1, 28, 150, 272, 209, 76, 13, 1, 1, 36, 256, 636, 696, 376, 106, 15, 1, 1, 45, 410, 1340, 1980, 1496, 615, 141, 17, 1, 1, 55, 625, 2600, 5000, 5032, 2850, 939, 181, 19, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jun 13 2000

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 6, 5, 1;
  1,10,16, 7, 1;
  ...
		

Crossrefs

Row sums give A005773. Columns 0-8: A000012, A000217, A011863(n-1), A055899-A055904. Cf. A055905, A055907.

Programs

  • Mathematica
    nmax = 10;
    A[x_, y_] = (1/2) x ((1 - (4 x/((1 + x) (1 + x - x y))))^(-1/2) - 1);
    g = A[x, y] + O[x]^(nmax+3);
    row[n_] := CoefficientList[Coefficient[g, x, n+2], y];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)
  • Maxima
    T(n,m):=sum(binomial(n-k,m)*sum(binomial(n-m-k,i)*(-1)^(n+m-i)*binomial(k+i,k)*binomial(2*i+1,i+1),i,0,n-m-k),k,0,n); /* Vladimir Kruchinin, Jan 26 2022 */

Formula

G.f.: A(x, y)=(1/2x)((1-(4x/((1+x)(1+x-xy))))^(-1/2) - 1).
T(n,m) = Sum_{k=0..n} C(n-k,m)*Sum_{i=0..n-m-k} (-1)^(n+m-i) *C(n-m-k,i) *C(k+i,k) *C(2*i+1,i+1). - Vladimir Kruchinin, Jan 26 2022

A055919 Number of directed site animals on hexagonal net (honeycomb) with n sites.

Original entry on oeis.org

2, 4, 10, 24, 60, 152, 402, 1094, 3012, 8232, 22086
Offset: 1

Views

Author

Christian G. Bower, Jun 22 2000

Keywords

Crossrefs

Row sums of A055907.

Extensions

Name edited by Andrey Zabolotskiy, Jun 21 2022
Showing 1-10 of 11 results. Next