cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056021 Numbers k such that k^4 == 1 (mod 5^2).

Original entry on oeis.org

1, 7, 18, 24, 26, 32, 43, 49, 51, 57, 68, 74, 76, 82, 93, 99, 101, 107, 118, 124, 126, 132, 143, 149, 151, 157, 168, 174, 176, 182, 193, 199, 201, 207, 218, 224, 226, 232, 243, 249, 251, 257, 268, 274, 276, 282, 293, 299, 301, 307, 318, 324, 326, 332, 343, 349
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Numbers congruent to {1, 7, 18, 24} mod 25.
These terms (apart from 1) are tetration bases characterized by a constant convergence speed strictly greater than 1 (see A317905). - Marco RipĂ , Jan 25 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 400 ], PowerMod[ #, 4, 25 ]==1& ]
    (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 7, 18, 24, 26}, 100] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    a(n) = (-25 - (-1)^n + (9-9*I)*(-I)^n + (9+9*I)*I^n + 50*n) / 8 \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(x^2+3*x+1)^2/((1+x)*(x^2+1)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015
    
  • PARI
    for(n=0, 1e3, if(n^4 % 5^2 == 1, print1(n", "))) \\ Altug Alkan, Oct 16 2015
    
  • PARI
    isok(k) = Mod(k, 25)^4 == 1; \\ Michel Marcus, Jun 30 2021

Formula

G.f.: x*(x^2+3*x+1)^2 / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011
a(n) = (-25 - (-1)^n + (9-9*i)*(-i)^n + (9+9*i)*i^n + 50*n) / 8, where i = sqrt(-1). - Colin Barker, Oct 16 2015
From Mike Sheppard, Feb 18 2025: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5).
a(n) ~ (5^2/4)*n. (End)