A056034 Numbers k such that k^28 == 1 (mod 29^2).
1, 14, 41, 60, 63, 137, 190, 196, 221, 236, 267, 270, 374, 416, 425, 467, 571, 574, 605, 620, 645, 651, 704, 778, 781, 800, 827, 840, 842, 855, 882, 901, 904, 978, 1031, 1037, 1062, 1077, 1108, 1111, 1215, 1257, 1266, 1308, 1412, 1415, 1446, 1461, 1486, 1492
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Mathematica
x=29; Select[ Range[ 2000 ], PowerMod[ #, x-1, x^2 ]==1& ]
-
PARI
isok(k) = Mod(k, 29^2)^28 == 1; \\ Michel Marcus, Apr 10 2025
Formula
From Mike Sheppard, Feb 20 2025 : (Start)
a(n) = a(n-1) + a(n-28) - a(n-29).
a(n) = a(n-28) + 29^2.
a(n) ~ (29^2/28)*n. (End)