cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056075 Numbers m such that m divides sigma(m) - d(m).

Original entry on oeis.org

1, 4, 56, 7192, 7232, 7912, 10792, 17272, 30592, 114256, 2154584, 3428368, 44375136, 89245784, 2739393699744, 36993585958528, 47319950478240, 118122891971648, 943226995376128, 2737657760695168, 5020331545072768, 36028789368553472, 40256362055287184, 42381542060395136, 950808877965961856, 2616769087480013696, 3515864044679266304, 4611826686121443328, 9223371897268338688
Offset: 1

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

Or, numbers n such that sigma(n) = k*n + d(n) for some k.
For most terms > 4, sigma(n) = 2*n + d(n), i.e., k=2. However, for the 12th term, k=3.
If p = 2^m-(2m+1) is prime and n = 2^(m-1)*p then sigma(n) = 2*n+d(n), i.e., k=2 and n is in the sequence. 56, 7232, 30592, 36028789368553472, 9223371897268338688 and 29230032746618058364071726105239688547563879792624 are such terms of the sequence. - Farideh Firoozbakht, Aug 19 2013
Note that for m = a(17) = 47319950478240, we have (sigma(m) - d(m))/m = 4. - Max Alekseyev, May 31 2025

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]-DivisorSigma[0, n], n]==0, Print[n]], {n, 1, 10^8}]
  • PARI
    is(n)=my(f=factor(n)); (sigma(f)-numdiv(f))%n==0 \\ Charles R Greathouse IV, Nov 04 2016

Formula

Numbers n such that A000203(n) (mod n) == A000005(n) or A054024(n)=A000005(n). - Labos Elemer, Apr 12 2002

Extensions

a(15) from Giovanni Resta, Nov 07 2019
a(16)-a(29) from Max Alekseyev, May 31 2025