cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056078 Number of proper T_1-hypergraphs with 3 labeled nodes and n hyperedges.

Original entry on oeis.org

0, 0, 2, 15, 54, 141, 306, 588, 1036, 1710, 2682, 4037, 5874, 8307, 11466, 15498, 20568, 26860, 34578, 43947, 55214, 68649, 84546, 103224, 125028, 150330, 179530, 213057, 251370, 294959, 344346, 400086, 462768, 533016, 611490, 698887, 795942, 903429, 1022162
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 26 2000

Keywords

Comments

Also number of 3 X 3 matrices with nonnegative integer entries with zero main diagonal and without zero rows or columns, such that sum of all entries is n. - Vladeta Jovovic, Sep 06 2006
A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v. A proper hypergraph is a hypergraph without empty hyperedges or hyperedges containing all nodes. - Vladeta Jovovic, Sep 06 2006

Examples

			There are 15 proper T_1-hypergraphs with 3 nodes and 4 hyperedges: {{3},{3},{2},{1}}, {{3},{2},{2},{1}}, {{3},{2},{2,3},{1}}, {{3},{2},{1},{1}}, {{3},{2},{1},{1,3}}, {{3},{2},{1},{1,2}}, {{3},{2},{1,3},{1,2}}, {{3},{2,3},{1},{1,2}}, {{3},{2,3},{1,3},{1,2}}, {{2},{2,3},{1},{1,3}}, {{2},{2,3},{1,3},{1,2}}, {{2,3},{2,3},{1,3},{1,2}}, {{2,3},{1},{1,3},{1,2}}, {{2,3},{1,3},{1,3},{1,2}}, {{2,3},{1,3},{1,2},{1,2}}.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • Magma
    [(n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120: n in [0..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,25, print1((n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = C(n+5,5) -6*C(n+3,3) +6*C(n+2,2) +3*C(n+1,1) -6*C(n,0).
a(n+1) = ( n^4 +20*n^3 +35*n^2 -140*n +84 )*n/120.
From Colin Barker, Jul 11 2013: (Start)
a(n) = (-240+394*n-135*n^2-35*n^3+15*n^4+n^5)/120.
G.f.: x^3 *(x-2) *(2*x^2-2*x-1) / (x-1)^6. (End)

Extensions

More terms from Colin Barker, Jul 11 2013