A056164 Number of ordered antichain covers of an unlabeled n-set; labeled T_1-hypergraphs (without empty hyperedges) with n hyperedges.
1, 2, 6, 109, 191177
Offset: 1
Examples
There are 6 ordered antichain covers on an unlabeled 3-set: ({1,2,3}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}). a(3)=1+3+2=6; a(4)=1+6+17+25+30+30=109; a(5)=1+10+71+429+2176+8310+20580+38640+60480+60480=191177.
References
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
Links
- K. S. Brown, Dedekind's problem
- Eric Weisstein's World of Mathematics, Antichain covers
Crossrefs
Formula
a(n)=Sum_{k=1..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains covers of an unlabeled n-set.
Comments