cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056190 a(n) = Sum_{d|n and gcd(d, n/d)=1} binomial(n,d).

Original entry on oeis.org

1, 3, 4, 5, 6, 42, 8, 9, 10, 308, 12, 728, 14, 3538, 3474, 17, 18, 48792, 20, 20370, 117632, 705686, 24, 737520, 26, 10400952, 28, 1204544, 30, 185903342, 32, 33, 193542210, 2333606816, 7049188, 94202222, 38, 35345264542, 8122434623
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n=100 has 9 divisors of which {1,4,25,100} are unitary, so a(100) = 100 + 3921225 + 242519269720337121015504 + 1.
		

Crossrefs

Cf. A056045.

Programs

  • Maple
    a:= n-> add(`if`(igcd(d, n/d)=1, binomial(n, d), 0),
                          d=numtheory[divisors](n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 25 2019
  • Mathematica
    a[n_] := Total[Binomial[n, Select[Divisors[n], CoprimeQ[#, n/#] &]]]; Array[a, 40] (* Amiram Eldar, Jul 28 2024 *)
  • PARI
    a(n) = sumdiv(n, d, if (gcd(d, n/d)==1, binomial(n, d))); \\ Michel Marcus, Aug 25 2019

Formula

a(n) = A056045(n) for squarefree n, when all divisors are unitary.