A098676 Duplicate of A056214.
73, 1423, 1459, 2377, 2503, 3457, 7741, 9433, 10891, 10909, 16057, 17299, 17623
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 700]], f[ # ] == 4 &] (* Robert G. Wilson v, Aug 02 2000 *) LP[ n_Integer ] := (ds = Divisors[ n - 1 ]; Take[ ds, Position[ PowerMod[ 10, ds, n ], 1 ][ [ 1, 1 ] ] ][ [ -1 ] ]); CL[ n_Integer ] := (n - 1)/LP[ n ]; Select[ Range[ 7, 7500 ], PrimeQ[ # ] && CL[ # ] == 4 & ] (* Robert G. Wilson v, Aug 02 2000 *)
127 has period 42 and (127-1)/3 = 126/3 = 42.
LP[ n_Integer ] := (ds = Divisors[ n - 1 ]; Take[ ds, Position[ PowerMod[ 10, ds, n ], 1 ][ [ 1, 1 ] ] ][ [ -1 ] ]); CL[ n_Integer ] := (n - 1)/LP[ n ]; Select[ Range[ 7, 7500 ], PrimeQ[ # ] && CL[ # ] == 3 & ] f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 700]], f[ # ] == 3 &] (* Robert G. Wilson v, Sep 14 2004 *)
select(t -> isprime(t) and numtheory:-order(10, t) = (t-1)/5, [seq(t,t=11..17000,10)]); # Robert Israel, Apr 02 2018
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 2000]], f[ # ] == 5 &]
a[n_Integer] := Block[{m = If[ OddQ@ n, 2n, n]}, p = m +1; While[ !PrimeQ@ p || p != 1 + n*MultiplicativeOrder[10, p], p = p += m]; p]; a[1] = 7; a[4] = 53; Array[f, 50] (* Robert G. Wilson v, Apr 19 2005; revised Aug 20 2014 and Feb 14 2025 *)
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 850]], f[ # ] == 6 &]
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 4700]], f[ # ] == 7 &]
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 3000]], f[ # ] == 10 &]
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 11000]], f[ # ] == 11 &]
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 15000]], f[ # ] == 13 &]
Comments