A056219 Number of partitions of n in SPM(n): these are the partitions obtained from (n) by iteration of the following transformation: p -> p' if p' is a partition (i.e., decreasing) and p' is obtained from p by removing a unit from the i-th component of p and adding one to the (i+1)-th component, for any i.
1, 2, 2, 4, 5, 6, 9, 13, 15, 19, 25, 34, 42, 51, 61, 78, 98, 122, 146, 175, 209, 253, 307, 374, 444, 524, 617, 729, 858, 1016, 1200, 1414, 1649, 1916, 2223, 2586, 2996, 3475, 4031, 4672, 5385, 6191, 7102, 8148, 9329, 10673, 12201, 13957, 15939, 18172
Offset: 1
Examples
The fifth term of the sequence is 5 since SPM(5) = { (5), (4,1), (3,2), (3,1,1), (2,2,1) }. The seventh term of the sequence is 9 since SPM(7) = { (7), (6,1), (5,2), (4,3), (5,1,1), (4,2,1), (3,3,1), (3,2,2), (3,2,1,1) }.
References
- George E. Andrews, Number Theory, Dover Publications, N.Y. 1971, pp 167-169.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
- S. Corteel and D. Gouyou-Beauchamps, Enumeration of Sand Piles, Discrete Maths, 256 (2002) 3, 625-643.
- D. Dhar, P. Ruelle, S. Sen and D. Verma, Algebraic aspects of sandpile models, Journal of Physics A 28: 805-831, 1995.
- E. Goles and M.A. Kiwi, Games on line graphs and sand piles, Theoretical Computer Science 115: 321-349, 1993
- M. Latapy, R. Mantaci, M. Morvan and H. D. Phan, Structure of some sand piles model, Theoret. Comput. Sci. 262 (2001), 525-556.
- Index entries for sequences related to cellular automata
Programs
-
Magma
max:=50; R
:=PowerSeriesRing(Integers(), max); b:=Coefficients(R!( (&+[x^Binomial(n+1,2)*(&*[x + 1/(1-x^j): j in [1..n]]): n in [1..Floor(Sqrt(9+8*max)/2)]]) )); [b[n]: n in [1..max-1]]; // G. C. Greubel, Nov 29 2019 -
Maple
N:= 100: # to get a(1) .. a(N) g:= add(x^(n*(n+1)/2)*mul(x+1/(1-x^k),k=1..n),n=1..floor(sqrt(9+8*N)/2)): S:= series(g,x,N+1): seq(coeff(S,x,j),j=1..N); # Robert Israel, Oct 20 2016
-
Mathematica
max = 60; gf = (1/x) Sum[x^(n*(n+1)/2)*Product[(x + 1/(1-x^k)), {k, n}], {n, max}] + O[x]^max; CoefficientList[gf, x] (* Jean-François Alcover, Oct 20 2016, after Vladeta Jovovic *) max:= 100; Rest@CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[(x +1/(1-x^k)), {k, n}], {n, Floor[Sqrt[9+8*(max)]/2]}], {x, 0, max}], x] (* G. C. Greubel, Nov 29 2019 *)
-
Sage
max=50; def A056219_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( sum(x^binomial(n+1,2)*product((x + 1/(1-x^j)) for j in (1..n)) for n in (1..floor(sqrt(9+8*max)/2))) ).list() a=A056219_list(max); a[1:] # G. C. Greubel, Nov 29 2019
Formula
G.f.: Sum_{n>=1} x^(n*(n+1)/2)*Product_{k=1..n} (x+1/(1-x^k)). - Vladeta Jovovic, Jun 09 2007
Comments