cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056243 Third diagonal of triangle A056242.

Original entry on oeis.org

1, 9, 41, 146, 456, 1312, 3568, 9312, 23552, 58112, 140544, 334336, 784384, 1818624, 4173824, 9494528, 21430272, 48037888, 107020288, 237109248, 522715136, 1147142144, 2507145216, 5458886656, 11844714496, 25618808832, 55247372288
Offset: 3

Views

Author

Colin Mallows, Aug 23 2000

Keywords

Crossrefs

Cf. A056242.

Programs

  • Maple
    seq(add((-1)^(n-3-j)*binomial(n-3,j)*binomial(n+2*j-1,2*j),j=0..n-3),n=3..40); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
    T:=proc(n,k) local j: if k=1 then 1 elif k<=n then add((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(T(n,n-2),n=3..40); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005

Formula

a(n) = Sum_{0<=j<=n-3} (-1)^(n-3-j)*binomial(n-3, j)*binomial(n+2j-1, 2j), for n>=3. - Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Conjecture: a(n) = 2^(-6+n)*(32-35*n+9*n^2). G.f.: x^3*(1+3*x-x^2)/(1-2*x)^3. - Colin Barker, Mar 20 2012

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005