A056243 Third diagonal of triangle A056242.
1, 9, 41, 146, 456, 1312, 3568, 9312, 23552, 58112, 140544, 334336, 784384, 1818624, 4173824, 9494528, 21430272, 48037888, 107020288, 237109248, 522715136, 1147142144, 2507145216, 5458886656, 11844714496, 25618808832, 55247372288
Offset: 3
Links
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
Crossrefs
Cf. A056242.
Programs
-
Maple
seq(add((-1)^(n-3-j)*binomial(n-3,j)*binomial(n+2*j-1,2*j),j=0..n-3),n=3..40); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005 T:=proc(n,k) local j: if k=1 then 1 elif k<=n then add((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(T(n,n-2),n=3..40); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Formula
a(n) = Sum_{0<=j<=n-3} (-1)^(n-3-j)*binomial(n-3, j)*binomial(n+2j-1, 2j), for n>=3. - Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Conjecture: a(n) = 2^(-6+n)*(32-35*n+9*n^2). G.f.: x^3*(1+3*x-x^2)/(1-2*x)^3. - Colin Barker, Mar 20 2012
Extensions
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005