cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117317 Triangle related to partitions of n.

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 16, 9, 1, 16, 44, 41, 14, 1, 32, 112, 146, 85, 20, 1, 64, 272, 456, 377, 155, 27, 1, 128, 640, 1312, 1408, 833, 259, 35, 1, 256, 1472, 3568, 4712, 3649, 1652, 406, 44, 1, 512, 3328, 9312, 14608, 14002, 8361, 3024, 606, 54, 1, 1024, 7424, 23552
Offset: 0

Views

Author

Paul Barry, Mar 07 2006

Keywords

Comments

Row sums are A007052. Diagonal sums are A052988. Reversal of A056242.
Essentially given by (0, 2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 28 2012

Examples

			Triangle begins
1,
2, 1,
4, 5, 1,
8, 16, 9, 1,
16, 44, 41, 14, 1,
32, 112, 146, 85, 20, 1,
64, 272, 456, 377, 155, 27, 1
Triangle (0, 2, 0, 0, 0, 0, ...) DELTA (1, 0, 1/2, 1/2, 0, 0, ...) begins :
1
0, 1
0, 2, 1
0, 4, 5, 1
0, 8, 16, 9, 1
0, 16, 44, 41, 14, 1
0, 32, 112, 146, 85, 20, 1
0, 64, 272, 456, 377, 155, 27, 1
		

Crossrefs

Cf. Columns : A000079, A053220, A056243 ; Diagonals : A000012, A000096

Programs

  • Haskell
    a117317 n k = a117317_tabl !! n !! k
    a117317_row n = a117317_tabl !! n
    a117317_tabl = map reverse a056242_tabl
    -- Reinhard Zumkeller, May 08 2014

Formula

Number triangle T(n,k)=sum{j=0..n-k, C(n+j,k)C(n-k,j)}
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) for n>1. - Philippe Deléham, Jan 28 2012
G.f.: (1-y*x)/(1-2*(y+1)*x+y*(y+1)*x^2). - Philippe Deléham, Jan 28 2012

A185342 Triangle of successive recurrences in columns of A117317(n).

Original entry on oeis.org

2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0

Views

Author

Paul Curtz, Jan 26 2012

Keywords

Comments

A117317 (A):
1
2 1
4 5 1
8 16 9 1
16 44 41 14 1
32 112 146 85 20 1
64 272 456 377 155 27 1
have for their columns successive signatures
(2) (4,-4) (6,-12,8) (8,-24, 32, -16) (10,-40,80,-80,32) i.e. a(n).
Take based on abs(A133156) (B):
1
2 0
4 1 0
8 4 0 0
16 12 1 0 0
32 32 6 0 0 0
64 80 24 1 0 0 0.
The recurrences of successive columns are also a(n). a(n) columns: A005843(n+1), A046092(n+1), A130809, A130810, A130811, A130812, A130813.

Examples

			Triangle T(n,k),for 1<=k<=n, begins :
2                                         (1)
4    -4                                   (2)
6   -12   8                               (3)
8   -24  32   -16                         (4)
10  -40  80   -80   32                    (5)
12  -60 160  -240  192   -64              (6)
14  -84 280  -560  672  -448  128         (7)
16 -112 448 -1120 1792 -1792 1024 -256    (8)
Successive rows can be divided by A171977.
		

Crossrefs

Cf. For (A): A053220, A056243. For (B): A000079, A001787, A001788, A001789. For A193862: A115068 (a Coxeter group). For (2): A014480 (also (3),(4),(5),..); also A053220 and A001787.
Cf. A007318.

Programs

  • Mathematica
    Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017

Formula

Take A133156(n) without 1's or -1's double triangle (C)=
2
4
8 -4
16 -12
32 -32 6
64 -80 24
128 -192 80 -8
256 -448 240 -40
512 -1024 672 -160 10;
a(n) is increasing odd diagonals and increasing (sign changed) even diagonals. Rows sum of (C) = A201629 (?) Another link between Chebyshev polynomials and cos( ).
Absolute values: A013609(n) without 1's. Also 2*A193862 = (2*A002260)*A135278.
T(n,k) = T(n-1,k) - 2*T(n-1,k-1) for k>1, T(n,1) = 2*n = 2*T(n-1,1) - T(n-2,1). - Philippe Deléham, Feb 11 2012
T(n,k) = (-1)* Binomial(n,k)*(-2)^k, 1<=k<=n. - Philippe Deléham, Feb 11 2012
Showing 1-2 of 2 results.