cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A185342 Triangle of successive recurrences in columns of A117317(n).

Original entry on oeis.org

2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0

Views

Author

Paul Curtz, Jan 26 2012

Keywords

Comments

A117317 (A):
1
2 1
4 5 1
8 16 9 1
16 44 41 14 1
32 112 146 85 20 1
64 272 456 377 155 27 1
have for their columns successive signatures
(2) (4,-4) (6,-12,8) (8,-24, 32, -16) (10,-40,80,-80,32) i.e. a(n).
Take based on abs(A133156) (B):
1
2 0
4 1 0
8 4 0 0
16 12 1 0 0
32 32 6 0 0 0
64 80 24 1 0 0 0.
The recurrences of successive columns are also a(n). a(n) columns: A005843(n+1), A046092(n+1), A130809, A130810, A130811, A130812, A130813.

Examples

			Triangle T(n,k),for 1<=k<=n, begins :
2                                         (1)
4    -4                                   (2)
6   -12   8                               (3)
8   -24  32   -16                         (4)
10  -40  80   -80   32                    (5)
12  -60 160  -240  192   -64              (6)
14  -84 280  -560  672  -448  128         (7)
16 -112 448 -1120 1792 -1792 1024 -256    (8)
Successive rows can be divided by A171977.
		

Crossrefs

Cf. For (A): A053220, A056243. For (B): A000079, A001787, A001788, A001789. For A193862: A115068 (a Coxeter group). For (2): A014480 (also (3),(4),(5),..); also A053220 and A001787.
Cf. A007318.

Programs

  • Mathematica
    Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017

Formula

Take A133156(n) without 1's or -1's double triangle (C)=
2
4
8 -4
16 -12
32 -32 6
64 -80 24
128 -192 80 -8
256 -448 240 -40
512 -1024 672 -160 10;
a(n) is increasing odd diagonals and increasing (sign changed) even diagonals. Rows sum of (C) = A201629 (?) Another link between Chebyshev polynomials and cos( ).
Absolute values: A013609(n) without 1's. Also 2*A193862 = (2*A002260)*A135278.
T(n,k) = T(n-1,k) - 2*T(n-1,k-1) for k>1, T(n,1) = 2*n = 2*T(n-1,1) - T(n-2,1). - Philippe Deléham, Feb 11 2012
T(n,k) = (-1)* Binomial(n,k)*(-2)^k, 1<=k<=n. - Philippe Deléham, Feb 11 2012

A056242 Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 1, 9, 16, 8, 1, 14, 41, 44, 16, 1, 20, 85, 146, 112, 32, 1, 27, 155, 377, 456, 272, 64, 1, 35, 259, 833, 1408, 1312, 640, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 1, 54, 606, 3024, 8361, 14002, 14608, 9312, 3328, 512, 1, 65, 870, 5202
Offset: 1

Views

Author

Colin Mallows, Aug 23 2000

Keywords

Comments

Generalized Riordan array (1/(1-x), x/(1-x) + x*dif(x/1-x),x)). - Paul Barry, Dec 26 2007
Reversal of A117317. - Philippe Deléham, Feb 11 2012
Essentially given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 11 2012
This sequence is given in the Strehl presentation with the o.g.f. (1-z)/[1-2(1+t)z+(1+t)z^2], with offset 0, along with a recursion relation, a combinatorial interpretation, and relations to Hermite and Laguerre polynomials. Note that the o.g.f. is related to that of A049310. - Tom Copeland, Jan 08 2017
From Gus Wiseman, Mar 06 2020: (Start)
T(n,k) is also the number of unimodal length-n sequences covering an initial interval of positive integers with maximum part k, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the sequences counted by row n = 4 are:
(1111) (1112) (1123) (1234)
(1121) (1132) (1243)
(1122) (1223) (1342)
(1211) (1231) (1432)
(1221) (1232) (2341)
(1222) (1233) (2431)
(2111) (1321) (3421)
(2211) (1322) (4321)
(2221) (1332)
(2231)
(2311)
(2321)
(2331)
(3211)
(3221)
(3321)
(End)
T(n,k) is the number of hexagonal directed-column convex polyominoes of area n with k columns (see Baril et al. at page 9). - Stefano Spezia, Oct 14 2023

Examples

			Triangle begins:
  1;
  1,    2;
  1,    5,    4;
  1,    9,   16,    8;
  1,   14,   41,   44,   16;
  1,   20,   85,  146,  112,   32;
  1,   27,  155,  377,  456,  272,   64;
  1,   35,  259,  833, 1408, 1312,  640,  128;
  1,   44,  406, 1652, 3649, 4712, 3568, 1472,  256;
T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3}{12} and {2}{13}.
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
  1;
  1,   0;
  1,   2,   0;
  1,   5,   4,   0;
  1,   9,  16,   8,   0;
  1,  14,  41,  44,  16,   0;
  1,  20,  85, 146, 112,  32,   0;
  1,  27, 155, 377, 456, 272,  64,   0;
		

Crossrefs

Row sums are A007052.
Column k = n - 1 is A053220.
Ordered set-partitions are A000670.

Programs

  • Haskell
    a056242 n k = a056242_tabl !! (n-1)!! (k-1)
    a056242_row n = a056242_tabl !! (n-1)
    a056242_tabl = [1] : [1,2] : f [1] [1,2] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (map (* 2) $ zipWith (+) ([0] ++ vs) (vs ++ [0]))
                          (zipWith (+) ([0] ++ us ++ [0]) (us ++ [0,0]))
    -- Reinhard Zumkeller, May 08 2014
  • Maple
    T:=proc(n,k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..12);
  • Mathematica
    rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011 *)

Formula

The Hwang and Mallows reference gives explicit formulas.
T(n,k) = Sum_{j=0..k-1} (-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2j-1, 2j) (1<=k<=n); this is formula (11) in the Huang and Mallows reference.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(1,1) = 1, T(2,1) = 1, T(2,2) = 2. - Philippe Deléham, Feb 11 2012
G.f.: -(-1+x)*x*y/(1-2*x-2*x*y+x^2*y+x^2). - R. J. Mathar, Aug 11 2015

A086405 Row T(n,3) of number array A086404.

Original entry on oeis.org

1, 4, 18, 84, 396, 1872, 8856, 41904, 198288, 938304, 4440096, 21010752, 99423936, 470479104, 2226331008, 10535111424, 49852682496, 235905426432, 1116316463616, 5282466223104, 24996898556928, 118286594002944
Offset: 0

Views

Author

Paul Barry, Jul 19 2003

Keywords

Comments

Binomial transform of A079935.
Number of nonisomorphic graded posets with 0 of rank n+1, with exactly 2 elements of each rank level above 0. Here, we do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. - David Nacin, Feb 13 2012

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -6}, {1, 4}, 60] (* David Nacin, Feb 27 2012 *)
  • Python
    def a(n, adict={0:1, 1:4}):
        if n in adict:
            return adict[n]
        adict[n]=6*a(n-1)-6*a(n-2)
        return adict[n] # David Nacin, Feb 27 2012

Formula

G.f.: (1-2*x)/((1-(3-sqrt(3))*x)*(1-(3+sqrt(3))*x)) = (1-2*x)/(1-6*x+6*x^2);
a(n) = (3-sqrt(3))^n*(1/2 - 1/(2*sqrt(3))) + (3 + sqrt(3))^n*(1/2 + 1/(2*sqrt(3))).
E.g.f.: exp(3*x)*(cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3)). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=1..floor(n/2)} C(n, 2k)*3^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = (((1+sqrt(3))*(3+sqrt(3))^n) - ((1-sqrt(3))*(3-sqrt(3))^n))/sqrt(12). - Al Hakanson (hawkuu(AT)gmail.com), Jun 10 2009
a(n) = Sum_{k=0..n} A117317(n,k)*2^k. - Philippe Deléham, Jan 28 2012
a(n) = 6*(a(n-1) - a(n-2)), a(0)=1, a(1)=4. - David Nacin, Feb 27 2012
G.f.: (1-2*x)/(1-6*x+6*x^2). - Colin Barker, Aug 04 2012

A090040 (3*6^n + 2^n)/4.

Original entry on oeis.org

1, 5, 28, 164, 976, 5840, 35008, 209984, 1259776, 7558400, 45349888, 272098304, 1632587776, 9795522560, 58773127168, 352638746624, 2115832446976, 12694994616320, 76169967566848, 457019805138944, 2742118830309376
Offset: 0

Views

Author

Paul Barry, Nov 20 2003

Keywords

Comments

A090040 is the Q-residue of the triangle A175840, where Q is the triangular array (t(i,j)) given by t(i,j)=1; see A193649 for the definition of Q-residue. - Clark Kimberling, Aug 07 2011

Crossrefs

Cf. A081335.

Programs

Formula

G.f.: (1-3*x)/((1-2*x)*(1-6*x)).
E.g.f.: (3*exp(6*x)+exp(2*x))/4 = exp(4*x)*(cosh(2*x)+sinh(2*x)/2).
a(n) = 8*a(n-1) -12*a(n-2), a(0)=1, a(1)=5.
a(n) = (3*6^n+2^n)/4.
a(n)=6*a(n-1)-2^(n-1). - Paul Curtz, Jan 09 2009
Fourth binomial transform of (1, 1, 4, 4, 16, 16, ...). a(n)=sum{k=1..floor(n/2), C(n, 2k)4^(n-k-1)}. - Paul Barry, Nov 22 2003
a(n) = A019590 (mod 4), proof via a(n)=8*a(n-1)-12*a(n-2). - R. J. Mathar, Feb 25 2009
a(n) = Sum_{k, 0<=k<=n} A117317(n,k)*3^k. - Philippe Deléham, Jan 28 2012

A165241 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 8, 24, 25, 10, 1, 16, 60, 85, 55, 15, 1, 32, 144, 258, 231, 105, 21, 1, 64, 336, 728, 833, 532, 182, 28, 1, 128, 768, 1952, 2720, 2241, 1092, 294, 36, 1, 256, 1728, 5040, 8280, 8361, 5301, 2058, 450, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Rows sums: A006012; Diagonal sums: A052960.
The sums of each column of A117317 with its subsequent column, treated as a lower triangular matrix with an initial null column attached, or, equivalently, the products of the row polynomials p(n,y) of A117317 with (1+y) with the initial first row below added to the final result. The reversal of A117317 is A056242 with several combinatorial interpretations. - Tom Copeland, Jan 08 2017

Examples

			Triangle begins:
  1;
  1,  1;
  2,  3,  1;
  4,  9,  6,  1;
  8, 24, 25, 10,  1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. Sum_{k=0..n} T(n,k)*x^(n-k) = A123335(n), A000007(n), A000012(n), A006012(n), A084120(n), A090965(n), A165225(n), A165229(n), A165230(n), A165231(n), A165232(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively.
G.f.: (1-(1+y)*x)/(1-2(1+y)*x+(y+y^2)*x^2). - Philippe Deléham, Dec 19 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if nPhilippe Deléham, Dec 19 2011

Extensions

O.g.f. corrected by Tom Copeland, Jan 15 2017

A090041 a(n) = 10*a(n-1) - 20*a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 40, 280, 2000, 14400, 104000, 752000, 5440000, 39360000, 284800000, 2060800000, 14912000000, 107904000000, 780800000000, 5649920000000, 40883200000000, 295833600000000, 2140672000000000, 15490048000000000
Offset: 0

Views

Author

Paul Barry, Nov 20 2003

Keywords

Crossrefs

Formula

G.f.: (1-4*x)/(1-10*x+20*x^2) = (1-4*x)/((1-(5-sqrt(5))*x)*(1-(5+sqrt(5))*x)).
E.g.f.: exp(5*x)*(cosh(sqrt(5)*x) + sinh(sqrt(5)*x)/sqrt(5));
a(n) = ((1+sqrt(5))*(5+sqrt(5))^n - (1-sqrt(5))*(5-sqrt(5))^n)/(2*sqrt(5)).
Fifth binomial transform of (1, 1, 5, 5, 25, 25, ...). - Paul Barry, Nov 22 2003
3rd binomial transform of Fibonacci(3n+1). - Paul Barry, Mar 23 2004
a(n) = Sum_{k=0..n} A117317(n,k)*4^k. - Philippe Deléham, Jan 28 2012
Showing 1-6 of 6 results.