A202481
Column k = 3 of triangular array in A165241.
Original entry on oeis.org
1, 10, 55, 231, 833, 2720, 8280, 23920, 66352, 178176, 465920, 1191680, 2991360, 7389184, 17999872, 43315200, 103116800, 243138560, 568393728, 1318518784, 3037265920, 6952058880, 15820390400, 35809918976, 80659611648
Offset: 0
-
LinearRecurrence[{8,-24,32,-16},{1,10,55,231,833},30] (* Harvey P. Dale, Dec 04 2018 *)
A202493
Column k = 4 of triangular array in A165241.
Original entry on oeis.org
1, 15, 105, 532, 2241, 8361, 28610, 91740, 279624, 818272, 2315712, 6372480, 17123840, 45082368, 116596224, 296879104, 745543680, 1849344000, 4536958976, 11020075008, 26526547968, 63329075200, 150057123840
Offset: 0
A210754
Triangle of coefficients of polynomials v(n,x) jointly generated with A210753; see the Formula section.
Original entry on oeis.org
1, 3, 2, 6, 9, 4, 10, 25, 24, 8, 15, 55, 85, 60, 16, 21, 105, 231, 258, 144, 32, 28, 182, 532, 833, 728, 336, 64, 36, 294, 1092, 2241, 2720, 1952, 768, 128, 45, 450, 2058, 5301, 8361, 8280, 5040, 1728, 256, 55, 660, 3630, 11385, 22363, 28610, 23920
Offset: 1
First five rows:
1
3....2
6....9....4
10...25...24...8
15...55...85...60...16
First three polynomials v(n,x): 1, 3 + 2x, 6 + 9x +4x^2
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210753 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210754 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007070 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A035344 *)
A202480
Riordan array (1/(1-x), x(2x-1)/(1-x)^2).
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, 0, 1, -1, 1, 2, -1, -1, 1, 1, 5, -5, 2, 1, -1, 1, 9, -10, 8, -3, -1, 1, 1, 14, -14, 14, -11, 4, 1, -1, 1, 20, -14, 14, -17, 14, -5, -1, 1, 1, 27, -6, 0, -9, 19, -17, 6, 1, -1
Offset: 0
Triangle begins :
1
1, -1
1, -1, 1
1, 0, 1, -1
1, 2, -1, -1, 1
1, 5, -5, 2, 1, -1
1, 9, -10, 8, -3, -1, 1
1, 14, -14, 14, -11, 4, 1, -1
(1+x^2-x^3)/(1-2x)^3 is the g.f of column A165241(n+2,2) := 1, 6, 25, 85, 258, 728, 1952, 5040, ...
Showing 1-4 of 4 results.
Comments