cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154529 A090040 mod 9.

Original entry on oeis.org

1, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8
Offset: 0

Views

Author

Paul Curtz, Jan 11 2009

Keywords

Comments

For n>2, equal to 2^(n-2) mod 9 [From Michael B. Porter, Feb 02 2010]
Apart from leading terms the same as A146501, A153130 and A029898. [From R. J. Mathar, Apr 13 2010]

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,0,-1,1},{5,1,2,4},101]] (* Ray Chandler, Jul 15 2015 *)

Formula

a(n)=a(n-1)-a(n-3)+a(n-4), n>4. G.f.: (6*x^4+2*x^3+4*x+1-4*x^2)/((1-x)*(1+x)*(x^2-x+1)). [From R. J. Mathar, Feb 25 2009]

Extensions

Edited by N. J. A. Sloane, Jan 12 2009
Extended by Ray Chandler, Jul 15 2015

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A083065 4th row of number array A083064.

Original entry on oeis.org

1, 4, 19, 94, 469, 2344, 11719, 58594, 292969, 1464844, 7324219, 36621094, 183105469, 915527344, 4577636719, 22888183594, 114440917969, 572204589844, 2861022949219, 14305114746094, 71525573730469, 357627868652344
Offset: 0

Author

Paul Barry, Apr 21 2003

Keywords

Comments

Inverse binomial transform of A090040. [Paul Curtz, Jan 11 2009]
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). [Milan Janjic, Feb 21 2010]
For an integer x, consider the sequence P(x) of polynomials p_{1}, p_{2}, p_{3}, . . . defined by p_{1} = x-1, p_{n+1} = x*p_{1} - 1. P(5) = This sequence. P(1), P(2), P(3), P(4) are A000004, A123412, A007051, A007583 resp. [K.V.Iyer, Jun 22 2010]
It appears that if s(n) is a first order rational sequence of the form s(0)=2, s(n)= (3*s(n-1)+2)/(2*s(n-1)+3), n>0, then s(n)=2*a(n)/(2*a(n)-1), n>0.
An Engel expansion of 5/3 to the base b := 5/4 as defined in A181565, with the associated series expansion 5/3 = b + b^2/4 + b^3/(4*19) + b^4/(4*19*94) + .... Cf. A007051. - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [(3*5^n+1)/4: n in [0..30]]; // Vincenzo Librandi, Nov 04 2011
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*5-1 od: seq(a[n], n=1..22); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    CoefficientList[Series[(1-2x)/((1-5x)(1-x)),{x,0,30}],x] (* or *) LinearRecurrence[{6,-5},{1,4},30] (* Harvey P. Dale, Jul 27 2022 *)

Formula

a(n) = (3*5^n+1)/4.
G.f.: (1-2*x)/((1-5*x)(1-x)).
E.g.f.: (3*exp(5*x) + exp(x))/4.
a(n) = 5*a(n-1)-1 with n>0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 6*a(n-1)-5*a(n-2). - Vincenzo Librandi, Nov 04 2011
a(n) = 5^n - Sum_{i=0..n-1} 5^i. - Bruno Berselli, Jun 20 2013

A154410 a(n) = 5*(3*6^n + 2^n)/2.

Original entry on oeis.org

10, 50, 280, 1640, 9760, 58400, 350080, 2099840, 12597760, 75584000, 453498880, 2720983040, 16325877760, 97955225600, 587731271680, 3526387466240, 21158324469760, 126949946163200, 761699675668480, 4570198051389440, 27421188303093760
Offset: 0

Author

Paul Curtz, Jan 09 2009

Keywords

Programs

  • Magma
    [5*(3*6^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
  • Mathematica
    LinearRecurrence[{8,-12},{10,50},30] (* Harvey P. Dale, Apr 27 2018 *)

Formula

a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 6*a(n-1) - 10*2^(n-1).
a(n) = A154407(n+1) - A154407(n).
a(n) = 10*A090040(n).
G.f.: 10*(1-3*x)/((1-2*x)*(1-6*x)). - Jaume Oliver Lafont, Aug 30 2009
E.g.f.: (5/2)*( exp(2*x) + 3*exp(6*x) ). - G. C. Greubel, Sep 16 2016

Extensions

Entries corrected and extended by Paolo P. Lava, Jan 20 2009
Comments turned into formulas by R. J. Mathar, Sep 07 2009
Showing 1-4 of 4 results.