A056243
Third diagonal of triangle A056242.
Original entry on oeis.org
1, 9, 41, 146, 456, 1312, 3568, 9312, 23552, 58112, 140544, 334336, 784384, 1818624, 4173824, 9494528, 21430272, 48037888, 107020288, 237109248, 522715136, 1147142144, 2507145216, 5458886656, 11844714496, 25618808832, 55247372288
Offset: 3
-
seq(add((-1)^(n-3-j)*binomial(n-3,j)*binomial(n+2*j-1,2*j),j=0..n-3),n=3..40); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
T:=proc(n,k) local j: if k=1 then 1 elif k<=n then add((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(T(n,n-2),n=3..40); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
A007052
Number of order-consecutive partitions of n.
Original entry on oeis.org
1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248, 5372879343616, 18344157523968, 62630871408640, 213835170586624
Offset: 0
G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7, proposition 16.
- Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
- Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, Preprint. (Annotated scanned copy)
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 164
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- N. J. A. Sloane, Transforms
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Index entries for sequences related to poker
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
Cf.
A000129,
A000670,
A001523,
A001653,
A007068,
A035344,
A060223,
A075271,
A227038,
A291292,
A328509,
A332577,
A332743,
A332873.
-
[Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011
-
a[n_]:=(MatrixPower[{{3,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
a[ n_] := ((2 + Sqrt[2])^(n + 1) + (2 - Sqrt[2])^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *)
LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *)
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Union@@Permutations/@allnorm[n],unimodQ]],{n,6}] (* Gus Wiseman, Mar 06 2020 *)
-
{a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */
A077998
Expansion of (1-x)/(1-2*x-x^2+x^3).
Original entry on oeis.org
1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995, 43100270734, 96845429254
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 14*x^4 + 31*x^5 + 70*x^6 + 157*x^7 + 353*x^8 + ... - _Michael Somos_, Dec 12 2023
- Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, Introducing supersymmetric frieze patterns and linear difference operators, Math. Z. 281 (2015) 1061.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Alexey Ustinov, Supercontinuants, arXiv:1503.04497 [math.NT], 2015.
- Floor van Lamoen, Wave sequences
- R. Witula, D. Slota, and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
Apart from initial term, same as
A006356, which is the main entry for this sequence.
A106803 is yet another version.
-
a:=[1,1,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
-
I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 01 2017
-
CoefficientList[Series[(1-x)/(1-2*x-x^2+x^3), {x, 0, 40}], x] (* Stefan Steinerberger, Sep 11 2006 *)
LinearRecurrence[{2,1,-1},{1,1,3},40] (* Roman Witula, Aug 07 2012 *)
a[ n_] := {1, 0, 0} . MatrixPower[{{0, 1, 0}, {0, 0, 1}, {-1, 1, 2}}, n] . {1, 1, 3}; (* Michael Somos, Dec 12 2023 *)
-
a(n)=([0,1,0; 0,0,1; -1,1,2]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
((1-x)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
A053220
a(n) = (3*n-1) * 2^(n-2).
Original entry on oeis.org
1, 5, 16, 44, 112, 272, 640, 1472, 3328, 7424, 16384, 35840, 77824, 167936, 360448, 770048, 1638400, 3473408, 7340032, 15466496, 32505856, 68157440, 142606336, 297795584, 620756992, 1291845632, 2684354560, 5570035712, 11542724608, 23890755584, 49392123904
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia, and Sabrina Mantaci, Hypercubes and Isometric Words based on Swap and Mismatch Distance, arXiv:2303.09898 [math.CO], 2023.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Center elements from triangle
A053218. Also a diagonal of triangle
A056242.
-
a053220 n = a056242 (n + 1) n -- Reinhard Zumkeller, May 08 2014
-
[(3*n-1)*2^(n-2): n in [1..50]]; // Vincenzo Librandi, May 09 2011
-
ListCorrelate[{1, 1}, Table[n 2^(n - 1), {n, 0, 28}]] (* or *) ListConvolve[{1, 1}, Table[n 2^(n - 1), {n, 0, 28}]] (* Ross La Haye, Feb 24 2007 *)
LinearRecurrence[{4, -4}, {1, 5}, 35] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
Array[(3# - 1) 2^(# - 2) &, 35] (* Alonso del Arte, Sep 04 2018 *)
CoefficientList[Series[(1 + x)/(1 - 2 * x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)
-
a(n)=if(n<1,0,(3*n-1)*2^(n-2))
-
a(n)=(3*n-1)<<(n-2) \\ Charles R Greathouse IV, Apr 17 2012
A332872
Number of ordered set partitions of {1..n} where no element of any block is greater than any element of a non-adjacent consecutive block.
Original entry on oeis.org
1, 1, 3, 10, 34, 116, 396, 1352, 4616, 15760
Offset: 0
The a(1) = 1 through a(3) = 10 ordered set partitions:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1}} {{1,2},{3}}
{{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
Ordered set-partitions are
A000670.
Unimodal sequences covering an initial interval are
A007052.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[Join@@Permutations/@sps[Range[n]],!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,5}]
A333150
Number of strict compositions of n whose non-adjacent parts are strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 8, 10, 13, 18, 26, 31, 42, 52, 68, 89, 110, 136, 173, 212, 262, 330, 398, 487, 592, 720, 864, 1050, 1262, 1508, 1804, 2152, 2550, 3037, 3584, 4236, 5011, 5880, 6901, 8095, 9472, 11048, 12899, 14996, 17436, 20261, 23460, 27128, 31385, 36189
Offset: 0
The a(1) = 1 through a(8) = 13 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,1) (3,1) (2,3) (2,4) (2,5) (2,6)
(3,2) (4,2) (3,4) (3,5)
(4,1) (5,1) (4,3) (5,3)
(2,3,1) (5,2) (6,2)
(3,1,2) (6,1) (7,1)
(3,2,1) (2,4,1) (2,5,1)
(4,1,2) (3,4,1)
(4,2,1) (4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
For example, (3,5,1,2) is such a composition, because the non-adjacent pairs of parts are (3,1), (3,2), (5,2), all of which are strictly decreasing.
The case of permutations appears to be
A000045(n + 1).
Unimodal strict compositions are
A072706.
A version for ordered set partitions is
A332872.
Cf.
A001523,
A028859,
A056242,
A059204,
A107429,
A115981,
A329398,
A332578,
A332669,
A332673,
A332724,
A332834,
A333193.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,10}]
-
seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, fibonacci(k+1) * polcoef(p,k,y)))} \\ Andrew Howroyd, Apr 16 2021
A117317
Triangle related to partitions of n.
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 16, 9, 1, 16, 44, 41, 14, 1, 32, 112, 146, 85, 20, 1, 64, 272, 456, 377, 155, 27, 1, 128, 640, 1312, 1408, 833, 259, 35, 1, 256, 1472, 3568, 4712, 3649, 1652, 406, 44, 1, 512, 3328, 9312, 14608, 14002, 8361, 3024, 606, 54, 1, 1024, 7424, 23552
Offset: 0
Triangle begins
1,
2, 1,
4, 5, 1,
8, 16, 9, 1,
16, 44, 41, 14, 1,
32, 112, 146, 85, 20, 1,
64, 272, 456, 377, 155, 27, 1
Triangle (0, 2, 0, 0, 0, 0, ...) DELTA (1, 0, 1/2, 1/2, 0, 0, ...) begins :
1
0, 1
0, 2, 1
0, 4, 5, 1
0, 8, 16, 9, 1
0, 16, 44, 41, 14, 1
0, 32, 112, 146, 85, 20, 1
0, 64, 272, 456, 377, 155, 27, 1
A332673
Triangle read by rows where T(n,k) is the number of length-k ordered set partitions of {1..n} whose non-adjacent blocks are pairwise increasing.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 14, 14, 5, 0, 1, 30, 45, 32, 8, 0, 1, 62, 124, 131, 65, 13, 0, 1, 126, 315, 438, 323, 128, 21, 0, 1, 254, 762, 1305, 1270, 747, 243, 34, 0, 1, 510, 1785, 3612, 4346, 3370, 1629, 452, 55
Offset: 0
Triangle begins:
1
0 1
0 1 2
0 1 6 3
0 1 14 14 5
0 1 30 45 32 8
0 1 62 124 131 65 13
0 1 126 315 438 323 128 21
0 1 254 762 1305 1270 747 243 34
...
Row n = 4 counts the following ordered set partitions:
{1234} {1}{234} {1}{2}{34} {1}{2}{3}{4}
{12}{34} {1}{23}{4} {1}{2}{4}{3}
{123}{4} {12}{3}{4} {1}{3}{2}{4}
{124}{3} {1}{24}{3} {2}{1}{3}{4}
{13}{24} {12}{4}{3} {2}{1}{4}{3}
{134}{2} {1}{3}{24}
{14}{23} {13}{2}{4}
{2}{134} {1}{34}{2}
{23}{14} {1}{4}{23}
{234}{1} {2}{1}{34}
{24}{13} {2}{13}{4}
{3}{124} {2}{14}{3}
{34}{12} {23}{1}{4}
{4}{123} {3}{12}{4}
An apparently related triangle is
A056242.
Ordered set-partitions are
A000670.
Non-unimodal normal sequences are
A328509.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==k&&!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,5},{k,0,n}]
A332724
Number of length n - 1 ordered set partitions of {1..n} where no element of any block is greater than any element of a non-adjacent consecutive block.
Original entry on oeis.org
0, 0, 1, 6, 14, 32, 65, 128, 243, 452, 826, 1490, 2659, 4704, 8261, 14418, 25030, 43252, 74437, 127648, 218199, 371920, 632306, 1072486, 1815239, 3066432, 5170825, 8705118, 14632958, 24562952, 41177801, 68947520, 115313979, 192656924, 321554986, 536191418
Offset: 0
The a(2) = 1 through a(4) = 14 ordered set partitions:
{{1,2}} {{1},{2,3}} {{1},{2},{3,4}}
{{1,2},{3}} {{1},{2,3},{4}}
{{1,3},{2}} {{1,2},{3},{4}}
{{2},{1,3}} {{1},{2,4},{3}}
{{2,3},{1}} {{1,2},{4},{3}}
{{3},{1,2}} {{1},{3},{2,4}}
{{1,3},{2},{4}}
{{1},{3,4},{2}}
{{1},{4},{2,3}}
{{2},{1},{3,4}}
{{2},{1,3},{4}}
{{2},{1,4},{3}}
{{2,3},{1},{4}}
{{3},{1,2},{4}}
Ordered set-partitions are
A000670.
Unimodal normal sequences appear to be
A007052.
Non-unimodal normal sequences are
A328509.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==n-1&&!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,8}]
-
\\ here b(n) is A001629(n).
b(n) = {((n+1)*fibonacci(n-1) + (n-1)*fibonacci(n+1))/5}
a(n) = {if(n==0, 0, b(n) + 4*b(n-1) + b(n-2))} \\ Andrew Howroyd, Apr 17 2021
A333148
Number of compositions of n whose non-adjacent parts are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 19, 30, 46, 69, 102, 149, 214, 304, 428, 596, 823, 1127, 1532, 2068, 2774, 3697, 4900, 6460, 8474, 11061, 14375, 18600, 23970, 30770, 39354, 50153, 63702, 80646, 101783, 128076, 160701, 201076, 250933, 312346, 387832, 480409, 593716, 732105, 900810, 1106063, 1355336, 1657517, 2023207, 2464987, 2997834, 3639464
Offset: 0
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(211) (131) (51)
(1111) (212) (141)
(221) (222)
(311) (231)
(1211) (312)
(2111) (321)
(11111) (411)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
(111111)
For example, (2,3,1,2) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), all of which are weakly decreasing.
The case of normal sequences appears to be
A028859.
A version for ordered set partitions is
A332872.
The case of strict compositions is
A333150.
The version for strictly decreasing parts is
A333193.
Standard composition numbers (
A066099) of these compositions are
A334966.
Cf.
A056242,
A059204,
A072706,
A107429,
A115981,
A329398,
A332578,
A332669,
A332673,
A332724,
A332834.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,15}]
-
def a333148(n): return number_of_partitions(n) + sum( Partitions(m, max_part=l, length=k).cardinality() * Partitions(n-m-l^2, min_length=k+2*l).cardinality() for l in range(1, (n+1).isqrt()) for m in range((n-l^2-2*l)*l//(l+1)+1) for k in range(ceil(m/l), min(m,n-m-l^2-2*l)+1) ) # Max Alekseyev, Oct 31 2024
Showing 1-10 of 12 results.
Comments