A007052
Number of order-consecutive partitions of n.
Original entry on oeis.org
1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248, 5372879343616, 18344157523968, 62630871408640, 213835170586624
Offset: 0
G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7, proposition 16.
- Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
- Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, Preprint. (Annotated scanned copy)
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 164
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- N. J. A. Sloane, Transforms
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Index entries for sequences related to poker
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
Cf.
A000129,
A000670,
A001523,
A001653,
A007068,
A035344,
A060223,
A075271,
A227038,
A291292,
A328509,
A332577,
A332743,
A332873.
-
[Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011
-
a[n_]:=(MatrixPower[{{3,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
a[ n_] := ((2 + Sqrt[2])^(n + 1) + (2 - Sqrt[2])^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *)
LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *)
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Union@@Permutations/@allnorm[n],unimodQ]],{n,6}] (* Gus Wiseman, Mar 06 2020 *)
-
{a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */
A028859
a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 73).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2025. See p. 14.
- Joerg Arndt, Matters Computational (The Fxtbook), section 14.9 "Strings with no two consecutive zeros", pp.318-320.
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
- Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 Example 7.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- P. Z. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- J. Shallit, Proof of Irvine's conjecture via mechanized guessing, arXiv preprint arXiv:2310.14252 [math.CO], October 22 2023.
- Eric Weisstein's World of Mathematics, Centipede Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Cf.
A155020 (same sequence with term 1 prepended).
-
a028859 n = a028859_list !! n
a028859_list =
1 : 3 : map (* 2) (zipWith (+) a028859_list (tail a028859_list))
-- Reinhard Zumkeller, Oct 15 2011
-
a[0]:=1:a[1]:=3:for n from 2 to 24 do a[n]:=2*a[n-1]+2*a[n-2] od: seq(a[n],n=0..24); # Emeric Deutsch
-
a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Table[2^(n - 1) Hypergeometric2F1[(1 - n)/2, -n/2, -n, -2], {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
LinearRecurrence[{2, 2}, {1, 3}, 20] (* Eric W. Weisstein, Jun 14 2017 *)
-
a(n)=([1,3;1,1]^n*[2;1])[2,1] \\ Charles R Greathouse IV, Mar 27 2012
-
A028859(n)=([1,1]*[2,2;1,0]^n)[1] \\ M. F. Hasler, Aug 06 2018
A056242
Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n).
Original entry on oeis.org
1, 1, 2, 1, 5, 4, 1, 9, 16, 8, 1, 14, 41, 44, 16, 1, 20, 85, 146, 112, 32, 1, 27, 155, 377, 456, 272, 64, 1, 35, 259, 833, 1408, 1312, 640, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 1, 54, 606, 3024, 8361, 14002, 14608, 9312, 3328, 512, 1, 65, 870, 5202
Offset: 1
Triangle begins:
1;
1, 2;
1, 5, 4;
1, 9, 16, 8;
1, 14, 41, 44, 16;
1, 20, 85, 146, 112, 32;
1, 27, 155, 377, 456, 272, 64;
1, 35, 259, 833, 1408, 1312, 640, 128;
1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256;
T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3}{12} and {2}{13}.
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 5, 4, 0;
1, 9, 16, 8, 0;
1, 14, 41, 44, 16, 0;
1, 20, 85, 146, 112, 32, 0;
1, 27, 155, 377, 456, 272, 64, 0;
- Reinhard Zumkeller, Rows n = 1..125 of table, flattened
- Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- Finn Bjarne Jost, Tautological Intersection Numbers and Order-Consecutive Partition Sequences, arXiv:2307.15825 [math.CO], 2023. See p. 9.
- V. Strehl, Combinatoire rétrospective et créative, an on-line presentation, slide 36, SLC 71, Bertinoro,, September 18, 2013.
- Volker Strehl, Lacunary Laguerre Series from a Combinatorial Perspective, Séminaire Lotharingien de Combinatoire, B76c (2017).
Ordered set-partitions are
A000670.
Cf.
A001523,
A049310,
A072704,
A084938,
A097805,
A117317,
A227038,
A328509,
A332294,
A332673,
A332724,
A332872.
-
a056242 n k = a056242_tabl !! (n-1)!! (k-1)
a056242_row n = a056242_tabl !! (n-1)
a056242_tabl = [1] : [1,2] : f [1] [1,2] where
f us vs = ws : f vs ws where
ws = zipWith (-) (map (* 2) $ zipWith (+) ([0] ++ vs) (vs ++ [0]))
(zipWith (+) ([0] ++ us ++ [0]) (us ++ [0,0]))
-- Reinhard Zumkeller, May 08 2014
-
T:=proc(n,k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..12);
-
rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011 *)
A333150
Number of strict compositions of n whose non-adjacent parts are strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 8, 10, 13, 18, 26, 31, 42, 52, 68, 89, 110, 136, 173, 212, 262, 330, 398, 487, 592, 720, 864, 1050, 1262, 1508, 1804, 2152, 2550, 3037, 3584, 4236, 5011, 5880, 6901, 8095, 9472, 11048, 12899, 14996, 17436, 20261, 23460, 27128, 31385, 36189
Offset: 0
The a(1) = 1 through a(8) = 13 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,1) (3,1) (2,3) (2,4) (2,5) (2,6)
(3,2) (4,2) (3,4) (3,5)
(4,1) (5,1) (4,3) (5,3)
(2,3,1) (5,2) (6,2)
(3,1,2) (6,1) (7,1)
(3,2,1) (2,4,1) (2,5,1)
(4,1,2) (3,4,1)
(4,2,1) (4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
For example, (3,5,1,2) is such a composition, because the non-adjacent pairs of parts are (3,1), (3,2), (5,2), all of which are strictly decreasing.
The case of permutations appears to be
A000045(n + 1).
Unimodal strict compositions are
A072706.
A version for ordered set partitions is
A332872.
Cf.
A001523,
A028859,
A056242,
A059204,
A107429,
A115981,
A329398,
A332578,
A332669,
A332673,
A332724,
A332834,
A333193.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,10}]
-
seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, fibonacci(k+1) * polcoef(p,k,y)))} \\ Andrew Howroyd, Apr 16 2021
A332673
Triangle read by rows where T(n,k) is the number of length-k ordered set partitions of {1..n} whose non-adjacent blocks are pairwise increasing.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 14, 14, 5, 0, 1, 30, 45, 32, 8, 0, 1, 62, 124, 131, 65, 13, 0, 1, 126, 315, 438, 323, 128, 21, 0, 1, 254, 762, 1305, 1270, 747, 243, 34, 0, 1, 510, 1785, 3612, 4346, 3370, 1629, 452, 55
Offset: 0
Triangle begins:
1
0 1
0 1 2
0 1 6 3
0 1 14 14 5
0 1 30 45 32 8
0 1 62 124 131 65 13
0 1 126 315 438 323 128 21
0 1 254 762 1305 1270 747 243 34
...
Row n = 4 counts the following ordered set partitions:
{1234} {1}{234} {1}{2}{34} {1}{2}{3}{4}
{12}{34} {1}{23}{4} {1}{2}{4}{3}
{123}{4} {12}{3}{4} {1}{3}{2}{4}
{124}{3} {1}{24}{3} {2}{1}{3}{4}
{13}{24} {12}{4}{3} {2}{1}{4}{3}
{134}{2} {1}{3}{24}
{14}{23} {13}{2}{4}
{2}{134} {1}{34}{2}
{23}{14} {1}{4}{23}
{234}{1} {2}{1}{34}
{24}{13} {2}{13}{4}
{3}{124} {2}{14}{3}
{34}{12} {23}{1}{4}
{4}{123} {3}{12}{4}
An apparently related triangle is
A056242.
Ordered set-partitions are
A000670.
Non-unimodal normal sequences are
A328509.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==k&&!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,5},{k,0,n}]
A332724
Number of length n - 1 ordered set partitions of {1..n} where no element of any block is greater than any element of a non-adjacent consecutive block.
Original entry on oeis.org
0, 0, 1, 6, 14, 32, 65, 128, 243, 452, 826, 1490, 2659, 4704, 8261, 14418, 25030, 43252, 74437, 127648, 218199, 371920, 632306, 1072486, 1815239, 3066432, 5170825, 8705118, 14632958, 24562952, 41177801, 68947520, 115313979, 192656924, 321554986, 536191418
Offset: 0
The a(2) = 1 through a(4) = 14 ordered set partitions:
{{1,2}} {{1},{2,3}} {{1},{2},{3,4}}
{{1,2},{3}} {{1},{2,3},{4}}
{{1,3},{2}} {{1,2},{3},{4}}
{{2},{1,3}} {{1},{2,4},{3}}
{{2,3},{1}} {{1,2},{4},{3}}
{{3},{1,2}} {{1},{3},{2,4}}
{{1,3},{2},{4}}
{{1},{3,4},{2}}
{{1},{4},{2,3}}
{{2},{1},{3,4}}
{{2},{1,3},{4}}
{{2},{1,4},{3}}
{{2,3},{1},{4}}
{{3},{1,2},{4}}
Ordered set-partitions are
A000670.
Unimodal normal sequences appear to be
A007052.
Non-unimodal normal sequences are
A328509.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==n-1&&!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,8}]
-
\\ here b(n) is A001629(n).
b(n) = {((n+1)*fibonacci(n-1) + (n-1)*fibonacci(n+1))/5}
a(n) = {if(n==0, 0, b(n) + 4*b(n-1) + b(n-2))} \\ Andrew Howroyd, Apr 17 2021
A333148
Number of compositions of n whose non-adjacent parts are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 19, 30, 46, 69, 102, 149, 214, 304, 428, 596, 823, 1127, 1532, 2068, 2774, 3697, 4900, 6460, 8474, 11061, 14375, 18600, 23970, 30770, 39354, 50153, 63702, 80646, 101783, 128076, 160701, 201076, 250933, 312346, 387832, 480409, 593716, 732105, 900810, 1106063, 1355336, 1657517, 2023207, 2464987, 2997834, 3639464
Offset: 0
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(211) (131) (51)
(1111) (212) (141)
(221) (222)
(311) (231)
(1211) (312)
(2111) (321)
(11111) (411)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
(111111)
For example, (2,3,1,2) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), all of which are weakly decreasing.
The case of normal sequences appears to be
A028859.
A version for ordered set partitions is
A332872.
The case of strict compositions is
A333150.
The version for strictly decreasing parts is
A333193.
Standard composition numbers (
A066099) of these compositions are
A334966.
Cf.
A056242,
A059204,
A072706,
A107429,
A115981,
A329398,
A332578,
A332669,
A332673,
A332724,
A332834.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,15}]
-
def a333148(n): return number_of_partitions(n) + sum( Partitions(m, max_part=l, length=k).cardinality() * Partitions(n-m-l^2, min_length=k+2*l).cardinality() for l in range(1, (n+1).isqrt()) for m in range((n-l^2-2*l)*l//(l+1)+1) for k in range(ceil(m/l), min(m,n-m-l^2-2*l)+1) ) # Max Alekseyev, Oct 31 2024
A333193
Number of compositions of n whose non-adjacent parts are strictly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 71, 93, 122, 158, 204, 260, 332, 419, 528, 661, 825, 1023, 1267, 1560, 1916, 2344, 2860, 3476, 4217, 5097, 6147, 7393, 8872, 10618, 12685, 15115, 17977, 21336, 25276, 29882, 35271, 41551, 48872, 57385, 67277, 78745, 92040
Offset: 0
The a(1) = 1 through a(7) = 15 compositions:
(1) (2) (3) (4) (5) (6) (7)
(11) (12) (13) (14) (15) (16)
(21) (22) (23) (24) (25)
(31) (32) (33) (34)
(211) (41) (42) (43)
(221) (51) (52)
(311) (231) (61)
(312) (241)
(321) (322)
(411) (331)
(2211) (412)
(421)
(511)
(2311)
(3211)
For example, (2,3,1,2) is not such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), not all of which are strictly decreasing, while (2,4,1,1) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,1), (4,1), all of which are strictly decreasing.
A version for ordered set partitions is
A332872.
The case of strict compositions is
A333150.
The case of normal sequences appears to be
A001045.
Partitions with strictly increasing run-lengths are
A100471.
Partitions with strictly decreasing run-lengths are
A100881.
Compositions with weakly decreasing non-adjacent parts are
A333148.
Compositions with strictly increasing run-lengths are
A333192.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>=x]&]],{n,0,15}]
-
\\ p is all, q is those ending in an unreversed singleton.
seq(n)={my(q=O(x*x^n), p=1+q); for(k=1, n, [p,q] = [p*(1 + x^k + x^(2*k)) + q*x^k, q + p*x^k] ); Vec(p)} \\ Andrew Howroyd, Apr 17 2021
A334966
Numbers k such that the k-th composition in standard order (row k of A066099) has weakly decreasing non-adjacent parts.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 49, 51, 55, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 17: (4,1) 37: (3,2,1)
1: (1) 18: (3,2) 38: (3,1,2)
2: (2) 19: (3,1,1) 39: (3,1,1,1)
3: (1,1) 20: (2,3) 40: (2,4)
4: (3) 21: (2,2,1) 41: (2,3,1)
5: (2,1) 22: (2,1,2) 42: (2,2,2)
6: (1,2) 23: (2,1,1,1) 43: (2,2,1,1)
7: (1,1,1) 24: (1,4) 45: (2,1,2,1)
8: (4) 25: (1,3,1) 47: (2,1,1,1,1)
9: (3,1) 27: (1,2,1,1) 48: (1,5)
10: (2,2) 31: (1,1,1,1,1) 49: (1,4,1)
11: (2,1,1) 32: (6) 51: (1,3,1,1)
12: (1,3) 33: (5,1) 55: (1,2,1,1,1)
13: (1,2,1) 34: (4,2) 63: (1,1,1,1,1,1)
15: (1,1,1,1) 35: (4,1,1) 64: (7)
16: (5) 36: (3,3) 65: (6,1)
For example, (2,3,1,2) is such a composition because the non-adjacent pairs are (2,1), (2,2), (3,2), all of which are weakly decreasing, so 166 is in the sequence
The case of normal sequences appears to be
A028859.
A version for ordered set partitions is
A332872.
These compositions are enumerated by
A333148.
The strict case is enumerated by
A333150.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!MatchQ[stc[#],{_,x_,,y_,_}/;y>x]&]
Showing 1-9 of 9 results.
Comments