A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155
Offset: 0
Examples
For x = 0,1,2,3,4, x=1/(x+1) = 1, 1/2, 2/3, 3/5, 5/8. These fractions have numerators 1,1,2,3,5, which are the 2nd to 6th terms of the sequence. - _Cino Hilliard_, Sep 15 2008 From _Joerg Arndt_, May 21 2013: (Start) There are a(7)=13 compositions of 7 where there is a drop between every second pair of parts, starting with the first and second part: 01: [ 2 1 2 1 1 ] 02: [ 2 1 3 1 ] 03: [ 2 1 4 ] 04: [ 3 1 2 1 ] 05: [ 3 1 3 ] 06: [ 3 2 2 ] 07: [ 4 1 2 ] 08: [ 4 2 1 ] 09: [ 4 3 ] 10: [ 5 1 1 ] 11: [ 5 2 ] 12: [ 6 1 ] 13: [ 7 ] There are abs(a(6+1))=13 compositions of 6 where there is no rise between every second pair of parts, starting with the second and third part: 01: [ 1 2 1 2 ] 02: [ 1 3 1 1 ] 03: [ 1 3 2 ] 04: [ 1 4 1 ] 05: [ 1 5 ] 06: [ 2 2 1 1 ] 07: [ 2 3 1 ] 08: [ 2 4 ] 09: [ 3 2 1 ] 10: [ 3 3 ] 11: [ 4 2 ] 12: [ 5 1 ] 13: [ 6 ] (End) Partially ordered partitions of (n-1) into parts 1,2,3 where only the order of the adjacent 1's and 2's are unimportant. E.g., a(8)=21. These are (331),(313),(133),(322),(232),(223),(3211),(2311),(1321),(2131),(1132),(2113),(31111),(13111),(11311),(11131),(11113),(2221),(22111),(211111),(1111111). - _David Neil McGrath_, Jul 25 2015 Consider the partitions of 7 with summands initially listed in nonincreasing order. Keep the 1's frozen in position (indicated by "[]") and then allow the other summands to otherwise vary their order: 7; 6,[1]; 5,2; 2,5; 4,3; 3,4; 5,[1,1], 4,2,[1]; 2,4,[1]; 3,3,[1]; 3,3,2; 3,2,3; 2,3,3; 4,[1,1,1]; 3,2,[1,1]; 2,3,[1,1]; 2,2,2,[1]; 3,[1,1,1,1]; 2,2,[1,1,1]; 2,[1,1,1,1,1]; [1,1,1,1,1,1,1]. There are 21 = a(7+1) arrangements in all. - _Gregory L. Simay_, Jun 14 2016
References
- Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 70.
- R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 84.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 4.
- Marjorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 24 (Ex. 18), 489, 541.
- A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188 = Mathematical Papers Vol. 10, n. 634, p. 16.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 84, 111-124, 202-203.
- B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2nd edition), CUP, 2002. (See Exercise 1.15.)
- B. Davis, 'The law of first digits' in 'Science Today' (subsequently renamed '2001') March 1980 p. 55, Times of India, Mumbai.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.
- R. P. Grimaldi, Compositions without the summand 1, Proceedings Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 152 (2001), 33-43.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, pp. 286-288.
- H. Halberstam and K. F. Roth, Sequences, Oxford, 1966; see Appendix.
- S. Happersett, "Mathematical meditations", Journal of Mathematics and the Arts, 1 (2007), 29 - 33.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954; see esp. p. 148.
- V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
- E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, 1976; p. 338.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 63.
- C. Kicey and K. Klimko, Some geometry of Pascal's triangle, Pi Mu Epsilon Journal, 13(4):229-245 (2011).
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 78; Vol. 3, Section 6.2.1.
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
- Leonardo of Pisa [Leonardo Pisano], Liber Abaci [The Book of Calculation], 1202.
- D. Litchfield, D. Goldenheim and C. H. Dietrich, Euclid, Fibonacci and Sketchpad, Math. Teacher, 90 (1997).
- Lukovits et al., Nanotubes: Number of Kekulé structures and aromaticity, J. Chem. Inf. Comput. Sci, (2003), vol. 43, 609-614. See eq. 2 on page 610.
- I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44, 410-414 (2004). See Table 1, second column.
- B. Malesevic: Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- G. Mantel, Resten van wederkeerige Reeksen, Nieuw Archief v. Wiskunde, 2nd series, I (1894), 172-184.
- C. N. Menhinick, The Fibonacci Resonance and other new Golden Ratio discoveries, Onperson, (2015), pages 200-206.
- S. Mneimneh, Fibonacci in The Curriculum: Not Just a Bad Recurrence, in Proceeding SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Pages 253-258.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 49.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 274.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 55-58, 255-260.
- Alfred S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, Amherst, NY 2007.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996.
- Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 45, 59.
- J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
- A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 288.
- Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009
- L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 404-405 and [26] on p. 627.
- Simson, [No first name given], An explanation of an obscure passage in Albert Girard's Commentary ..., Phil. Trans. Royal Soc., 10 (1753), 430-433.
- Parmanand Singh, The so-called fibonacci numbers in ancient and medieval India, Historia Mathematica, vol. 12 (1985), 229-244.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 26-30.
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
- N. N. Vorob'ev, Chisla fibonachchi [Russian], Moscow, 1951. English translation, Fibonacci Numbers, Blaisdell, New York and London, 1961.
- N. N. Vorobiev, Fibonacci Numbers, Birkhauser (Basel; Boston) 2002.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 61-67, Penguin Books 1987.
- D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 53.
- R. Witula, D. Slota, delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.
Links
- N. J. A. Sloane, The first 2000 Fibonacci numbers: Table of n, F(n) for n = 0..2000
- Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math. 335 (2014), 1--7. MR3248794.
- Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
- Matt Anderson, Jeffrey Frazier and Kris Popendorf, The Fibonacci series: the section index [broken link]
- P. G. Anderson, Fibonacci Facts
- George E. Andrews, Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart. 42 (2004), no. 1, 3-19. MR2060558(2005b:11161).
- Joerg Arndt, Matters Computational (The Fxtbook)
- Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Volume 332, October 2014, Pages 45-54.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
- Ovidiu Bagdasar, Eve Hedderwick, Ioan-Lucian Popa, On the ratios and geometric boundaries of complex Horadam sequences, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 63-70.
- S. Barbero, U. Cerruti, N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, example 17.
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
- Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences , J. Int. Seq. 13 (2010) #10.7.2.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, Aoife Hennessy and Nikolaos Pantelidis, Algebraic properties of Riordan subgroups, J Algebr Comb 53, 1015-1036 (2021).
- A. T. Benjamin, A. K. Eustis, M. A. Shattuck, Compression Theorems for Periodic Tilings and Consequences, JIS 12 (2009) 09.6.3.
- E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
- Kh. Bibak and M. H. Shirdareh Haghighi, Some Trigonometric Identities Involving Fibonacci and Lucas Numbers, JIS 12 (2009) 09.8.4
- Marjorie Bicknell and Verner E Hoggatt Jr, To Prove: F(n) Divides F(nk), A Primer for the Fibonacci Numbers: IX (1973)
- J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
- H. Bottomley and N. J. A. Sloane, Illustration of initial terms: the Fibonacci tree.
- William Boyles, Table of n, a(n) for n = 0..9983
- Brantacan, Fibonacci Numbers [broken link]
- Jhon J. Bravo, Jose L. Herrera, and José L. Ramírez, Combinatorial Interpretation of Generalized Pell Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.2.1.
- J. Britton & B. V. Eeckhout, Fibonacci Interactive [broken link]
- S. Brlek, E. Duchi, E. Pergola and S. Rinaldi, On the equivalence problem for succession rules, Discr. Math., 298 (2005), 142-154.
- J. Brown and R. Duncan, Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences, Fibonacci Quarterly 8 (1970) 482-486.
- Steve Butler, Jason Ekstrand, and Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 155.
- N. D. Cahill, J. R. D'Errico, and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fib. Quart. 41 (2003) 13.
- N. D. Cahill and D. A. Narayan, Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants, Fibonacci Quarterly, 42(3):216-221, 2004.
- C. K. Caldwell, The Prime Glossary, Fibonacci number
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Dario Carrasquel, "5 ways to solve Fibonacci in Scala - Tail Recursion, Memoization, The Pisano Period & More", August 26, 2016.
- Paula M. M. C. Catarino, and Anabela Borges, On Leonardo numbers, Acta Mathematica Universitatis Comenianae (2019), 1-12.
- Daniel F. Checa, Arndt Compositions: Connections with Fibonacci Numbers, Statistics, and Generalizations, 2023.
- Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.
- Fan R. K. Chung, Persi Diaconis, and Ron Graham, Permanental generating functions and sequential importance sampling, Stanford University (2018).
- J. H. E. Cohn, On Square Fibonacci Numbers, Journal of the London Mathematical Society, Volume s1-39, Issue 1, 1964, Pages 537-540, doi:10.1112/jlms/s1-39.1.537.
- J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences
- J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997.
- H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
- E. S. Croot, Notes on Linear Recurrence Sequences
- Paul Cubre, The Z-densities of the Fibonacci sequence, M. A. Thesis, Wake Forest University, May 2012.
- Henrique F. da Cruz, Ilda Inácio, Rogério Serôdio, Convertible subspaces that arise from different numberings of the vertices of a graph, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 473-486.
- C. Dement, Posting to Math Forum [broken link].
- B. Demirturk and R. Keskin, Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers, JIS 12 (2009) 09.8.7.
- Ömür Deveci, Zafer Adıgüzel, and Taha Doğan, On the Generalized Fibonacci-circulant-Hurwitz numbers, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.
- Persi Diaconis, Probabilizing Fibonacci Numbers, 2017.
- R. M. Dickau, Fibonacci numbers
- Robert Dougherty-Bliss, The Meta-C-finite Ansatz, arXiv preprint arXiv:2206.14852, 2022
- R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.
- A.-S. Elsenhans and J. Jahnel, The Fibonacci sequence modulo p^2 - an investigation by computer for p < 10^14.
- Nathaniel D. Emerson, A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.8.
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
- Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255. MR1990179
- Philipp Fahr and Claus Michael Ringel, Categorification of the Fibonacci Numbers Using Representations of Quivers
- Sergio Falcon, Generating Function of Some k-Fibonacci and k-Lucas Sequences, International Journal of Innovation in Science and Mathematics (2019) Vol. 7, Issue 2, 2347-9051.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- John Farrier, Fibonacci Pigeons [From Sarah Spolaor, Sep 30 2010]
- Massimiliano Fasi and Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
- Helaman and Claire Ferguson, Celebrating Mathematics in Stone and Bronze, Notices of the American Mathematical Society, 57 (2010), 840-850. See page 844.
- Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
- Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, The Geometry of some Fibonacci Identities in the Hosoya Triangle, arXiv:1804.02481 [math.NT], 2018.
- D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux, Leonardo Fibonacci: il tempo, le opere, l'eredità scientifica (1994), 179-208.
- Robert Frontczak, Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ. (2020) Vol. 12, No. 1, 34-45.
- I. Galkin, "Fibonacci Numbers Spelled Out"
- Dale Gerdemann, Video of Fibonacci tree
- Dale Gerdemann, Video of Fibonacci tree(s) (another version)
- Dale Gerdemann, Golden Ratio Base Contains Zeckendorf and Negative Indexed Bunder Forms
- C. J. Glasby, S. P. Glasby, F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.
- L. Goldsmith, The Fibonacci Numbers [Wayback Machine link from _Felix Fröhlich_, Sep 06 2019]
- Taras Goy and Mark Shattuck, Fibonacci and Lucas identities from Toeplitz-Hessenberg matrices, Applications and Applied Mathematics: An International Journal, 14:2 (2019), 699-715.
- Taras Goy and Mark Shattuck, Determinant Identities for Toeplitz-Hessenberg Matrices with Tribonacci Number Entries, arXiv:2003.10660 [math.CO], 2020.
- Hank Green, The Fibonacci Sequence: Nature's Code (2012).
- M. Griffiths, A Restricted Random Walk defined via a Fibonacci Process, Journal of Integer Sequences, Vol. 14 (2011), #11.5.4.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Paul Hankin, An integer formula for Fibonacci numbers, blog post, April 2015.
- S. Happersett, Mathematical meditations, Journal of Mathematics and the Arts, 1(1) (2007), 29-33.
- Brady Haran and Colm Mulcahy, Little Fibs, Numberphile video (2016).
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.
- A. P. Hillman and G. L. Alexanderson, Algebra Through Problem Solving, Chapter 2 pp. 11-16, The Fibonacci and Lucas Numbers [broken link]
- A. M. Hinz, S. Klavžar, and U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 12. Book's website
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- V. E. Hoggatt and C. T. Long, Divisibility Properties of Generalized Fibonacci Polynomials, Fibonacci Quarterly, 12:113-120, 1974.
- Brian Hopkins, Aram Tangboonduangjit, Verifying and generalizing Arndt's compositions, The Fibonacci Quarterly, December 2022.
- Q.-H. Hou, Z.-W. Sun and H.-M. Wen, On monotonicity of some combinatorial sequences, arXiv:1208.3903 [math.CO], 2012-2014.
- J. Huang, Hecke algebras with independent parameters, arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.
- C. W. Huegy and D. B. West, A Fibonacci tiling of the plane, Discrete Math., 249 (2002), 111-116.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 9
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Tina Hill Janzen, Fibonacci sequence / Golden scale [broken link]
- James P. Jones, Diophantine representation of the Fibonacci numbers, Fibonacci Quarterly 13:1 (1975), pp. 84-88.
- R. Jovanovic, Fibonacci Function Calculator [Wayback Machine link from _Felix Fröhlich_, Sep 06 2019]
- R. Jovanovic, The relations between the Fibonacci and the Lucas numbers [Wayback Machine link from _Felix Fröhlich_, Sep 06 2019]
- R. Jovanovic, First 70 Fibonacci numbers [Wayback Machine link from _Felix Fröhlich_, Sep 06 2019]
- Ivana Jovović and Branko Malešević, Some Enumerations of Non-trivial Composition of the Differential Operations and the Directional Derivative, Notes on Number Theory and Discrete Mathematics 23, no. 1 (2017), 28-38. See Remark 2.9.
- S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004.
- P. W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.
- Manuel Kauers, Doron Zeilberger, Counting Standard Young Tableaux With Restricted Runs, arXiv:2006.10205 [math.CO], 2020.
- Louis H. Kauffman and Pedro Lopes, Graded forests and rational knots, arXiv:0710.3765 [math.GT], 2007-2009.
- Blair Kelly, Fibonacci and Lucas factorizations
- R. Keskin, Z. Yosma, On Fibonacci and Lucas Numbers of the form c*x^2, J. Int. Seq. 14 (2011) # 11.9.3.
- C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
- C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449, 2018.
- Ron Knott, Fibonacci numbers and the golden section
- Ron Knott, Mathematics of the Fibonacci Series
- Ron Knott, Fibonacci numbers with tables of F(0)-F(500).
- A. Krowne, PlanetMath.org, Fibonacci sequence [broken link]
- K. Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(1) 1929, pp. 59-67. [Annotated and corrected scanned copy]
- Hendrik Lenstra, Profinite Fibonacci Numbers
- Leonardo of Pisa [Leonardo Pisano], Illustration of initial terms, from Liber Abaci [The Book of Calculation], 1202 (photo by David Singmaster).
- M. A. Lerma, Recurrence Relations
- F. Luca, V. J. M. Huguet, F. Nicolae, On the Euler Function of Fibonacci Numbers, JIS 12 (2009) 09.6.6.
- Édouard Lucas, Note sur le triangle arithmétique de Pascal et sur la série de Lamé, Nouvelle correspondance mathématique, Vol. 2 (1876), pp. 70-75.
- Édouard Lucas, Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses questions d'arithmétique supérieure, Bulletino di bibliografia e di storia delle scienze matematiche e fisiche, Vol. 10 (1877), pp. 129-193, 239-293; alternative link.
- Édouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- David Macdonald, Music From the Fibonacci Sequence, Youtube video, Jun 17 2018
- B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n arXiv:0704.0750 [math.DG], 2007.
- B C Manjunath, Fibonacci Tala, recorded musical performance and synchronized player (2018).
- John Mason, Italian postage stamp celebrating 850 years since birth of Fibonacci
- Peter McCalla, Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Charles P. McKeague, Fibonacci numbers from MathTV
- Graeme McRae, Sum of 2m consecutive Fibonacci numbers
- R. S. Melham, Finite Reciprocal Sums Involving Summands that are Balanced Products of Generalized Fibonacci Numbers, J. Int. Seq. 17 (2014) # 14.6.5.
- R. S. Melahm, Reciprocal Series of Squares of Fibonacci Related Sequences with Subscripts in Arithmetic Progression, J. Int. Seq. 18 (2015) 15.8.7.
- D. Merlini, R. Sprugnoli and M. C. Verri, Strip tiling and regular grammars, Theoret. Computer Sci. 242, 1-2 (2000) 109-124.
- D. Merrill, The Fib-Phi Link Page [broken link]
- Ângela Mestre, José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Jean-Christophe Michel, Le nombre d'or dans l'ensemble de Mandelbrot (in French, 'The golden number in the Mandelbrot set')
- A. Milicevic and N. Trinajstic, Combinatorial Enumeration in Chemistry, Chem. Modell., Vol. 4, (2006), pp. 405-469.
- Kerry Mitchell, Spirolateral-Type Images from Integer Sequences, 2013.
- H. Mishima, Factorizations of Fibonacci numbers n=1..100, n=101..200, n=201..300, n=301..400, n=401..480
- P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, Are 3D Fibonacci spirals for real?: From science to arts and back to science, 2018 7th International Conference on Computers Communications and Control (ICCCC), IEEE, 2018.
- Mariana Nagy, Simon R. Cowell, Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Newton Institute, Posters in the London Underground
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
- OEIS Wiki, Autosequence
- J. J. O'Connor and E. F. Robertson, Mac Tutor History of Mathematics, Archarya Hemachandra
- Ahmet Öteleş, Zekeriya Y. Karata, Diyar O. Mustafa Zangana, Jacobsthal Numbers and Associated Hessenberg Matrices, J. Int. Seq., Vol. 21 (2018), Article 18.2.5.
- Arzu Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015, 2015:148.
- Ram Krishna Pandey, On Some Magnified Fibonacci Numbers Modulo a Lucas Number, Journal of Integer Sequences, Vol. 16 (2013), #13.1.7.
- J. Patterson, The Fibonacci Sequence. [broken link]
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- T. K. Petersen and B. E. Tenner, The depth of a permutation, arXiv:1202.4765v1 [math.CO], 2012-2014.
- Ivars Peterson, Fibonacci's Missing Flowers.
- Akos Pinter and Volker Ziegler, On Arithmetic Progressions in Recurrences - A new characterization of the Fibonacci sequence, arXiv:1005.3624 [math.NT], 2010.
- Simon Plouffe, Project Gutenberg, The First 1001 Fibonacci Numbers [broken link]
- Project Nayuki, Fast Fibonacci algorithms (fast doubling is faster than matrix multiplication).
- Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities (1996).
- A. Radhakrishnan, L. Solus, and C. Uhler, Counting Markov equivalence classes for DAG models on trees, Discrete Applied Mathematics 244 (2018): 170-185.
- Arulalan Rajan, R. Vittal Rao, Ashok Rao and H. S. Jamadagni, Fibonacci Sequence, Recurrence Relations, Discrete Probability Distributions and Linear Convolution, arXiv preprint arXiv:1205.5398 [math.PR], 2012. - From _N. J. A. Sloane_, Oct 23 2012
- Aayush Rajasekaran, Using Automata Theory to Solve Problems in Additive Number Theory, MS thesis, University of Waterloo, 2018.
- José L. Ramirez, Mark Shattuck, Generalized Jacobsthal numbers and restricted k-ary words, Pure Mathematics and Applications (2019) Vol. 28, Issue 1, 91-108.
- Marc Renault, The Fibonacci sequence under various moduli, MSc Thesis, Wake Forest U, 1996.
- N. Renton, The fibonacci Series
- B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
- Rosetta Code, A collection of codes to compute fibonacci numbers with different computer languages
- E. S. Rowland, Fibonacci Sequence Calculator up to n=1474
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
- Shiva Samieinia, Digital straight line segments and curves. Licentiate Thesis. Stockholm University, Department of Mathematics, Report 2007:6.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
- D. Schweizer, First 500 Fibonacci Numbers in blocks of 100. [broken link]
- Mark A. Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.
- Mark A. Shattuck and Carl G. Wagner, Periodicity and Parity Theorems for a Statistic on r-Mino Arrangements, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.6.
- S. Silvia, Fibonacci sequence [broken link]
- Parmanand Singh, The so-called Fibonacci numbers in ancient and medieval India, Historia Mathematica, Volume 12 (3), 1985, 229-244.
- Yüksel Soykan, On Hyperbolic Numbers With Generalized Fibonacci Numbers Components, Zonguldak Bülent Ecevit University (Turkey, 2019).
- Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104.
- Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441.
- Yüksel Soykan, Closed Formulas for the Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of Sum_{k=0..n} W_k^3 and Sum_{k=1..n} W_(-k)^3, Archives of Current Research International (2020) Vol. 20, Issue 2, 58-69.
- Yüksel Soykan, A Study on Generalized Fibonacci Numbers: Sum Formulas Sum_{k=0..n} k * x^k * W_k^3 and Sum_{k=1..n} k * x^k W_-k^3 for the Cubes of Terms, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 297-331.
- Jaap Spies, Sage program for computing A000045
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170-184.
- Z.-H. Sun, Congruences For Fibonacci Numbers
- Asep K. Supriatna, Ema Carnia, Meksianis Z. Ndii, Fibonacci numbers: A population dynamics perspective, Heliyon (2019) Vol. 5, Issue 1, e01130.
- Roberto Tauraso, A New Domino Tiling Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.3.
- B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
- Thesaurus.Maths.org, Fibonacci sequence [broken link]
- K. Tognetti, Letter to N. J. A. Sloane (with attachments), May 25 1994
- K. Tognetti, The Search for the Golden Sequence, Draft Manuscript, May 25 1994.
- K. Tognetti, Fibonacci-His Rabbits and His Numbers and Kepler
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Van Ravenstein, Tony. The three gap theorem (Steinhaus conjecture), Journal of the Australian Mathematical Society (Series A) 45.03 (1988): 360-370.
- Tony van Ravenstein, The three gap theorem (Steinhaus conjecture), Journal of the Australian Mathematical Society (Series A) 45.03 (1988): 360-370. [Annotated scanned copy]
- C. Vila, Nature by numbers (animation).
- Christobal Vila, Nature Numbers (Video related to Fibonacci numbers)
- N. N. Vorob'ev, Fibonacci numbers, Springer's Encyclopaedia of Mathematics.
- A. Y. Z. Wang, P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, Journal of Inequalities and Applications, 2015.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Carl G. Wagner, Partition Statistics and q-Bell Numbers (q = -1), J. Integer Seqs., Vol. 7, 2004.
- Robert Walker, Inharmonic "Golden Rhythmicon" - Fibonacci Sequence in Pairs Approaching Golden Ratio - With Bounce
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- L. C. Washington, Benford's Law for Fibonacci and Lucas numbers, Fib. Quarterly, 19-2 1981, pp. 175-177.
- Eric Weisstein's World of Mathematics, Fibonacci Number, Double-Free Set, Fibonacci n-Step Number, Resistor Network
- Eric Weisstein's World of Mathematics, Hosoya Index
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Path Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
- Wikipedia, Fibonacci number
- Wikipedia, Cassini and Catalan identities
- Willem's Fibonacci site, Fibonacci
- Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences - Finite subsequences and the role of the Fibonacci sequence, arXiv:1412.0519 [math.GM], 2014.
- Roman Witula, Damian Slota and Edyta Hetmaniok, Bridges between different known integer sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.
- R. Yanco, Letter and Email to N. J. A. Sloane, 1994
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
- Donovan Young, The Number of Domino Matchings in the Game of Memory, J. Int. Seq., Vol. 21 (2018), Article 18.8.1.
- Donovan Young, Generating Functions for Domino Matchings in the 2 * k Game of Memory, arXiv:1905.13165 [math.CO], 2019. Also in J. Int. Seq., Vol. 22 (2019), Article 19.8.7.
- Aimei Yu and Xuezheng Lv, The Merrifield-Simmons indices and Hosoya indices of trees with k pendant vertices, J. Math. Chem., Vol. 41 (2007), pp. 33-43. See page 35.
- Tianping Zhang and Yuankui Ma, On Generalized Fibonacci Polynomials and Bernoulli Numbers, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.3.
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
- Index entries for two-way infinite sequences
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A001622 (phi), A039834 (signed Fibonacci numbers), A001519 (F(2n-1)), A001906 (F(2n)), A001690 (complement), A000213, A000288, A000322, A000383, A060455, A030186, A020695, A020701, A060280 (inv. Eul. Trans), A071679, A099731, A100492, A094216, A094638, A000108, A101399, A101400, A001611, A000071, A157725, A001911, A157726, A006327, A157727, A157728, A157729, A167616, A059929, A144152, A152063, A114690, A003893, A000032, A060441, A000930, A003269, A000957, A057078, A007317, A091867, A104597, A249548, A262342, A001060, A022095, A072649, A163733, A073133, A166861 (Euler Transform), A337009 (Multiset Transf.).
First row of arrays A103323, A172236, A234357. Second row of arrays A099390, A048887, and A092921 (k-generalized Fibonacci numbers).
Cf. also A001175 (Pisano periods), A001177 (Entry points), A001176 (number of zeros in a fundamental period).
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.
Fibonacci-Cayley triangle: A327992.
Programs
-
Axiom
[fibonacci(n) for n in 0..50]
-
GAP
Fib:=[0,1];; for n in [3..10^3] do Fib[n]:=Fib[n-1]+Fib[n-2]; od; Fib; # Muniru A Asiru, Sep 03 2017
-
Haskell
-- Based on code from http://www.haskell.org/haskellwiki/The_Fibonacci_sequence -- which also has other versions. fib :: Int -> Integer fib n = fibs !! n where fibs = 0 : 1 : zipWith (+) fibs (tail fibs) {- Example of use: map fib [0..38] Gerald McGarvey, Sep 29 2009 -}
-
Julia
function fib(n) F = BigInt[1 1; 1 0] Fn = F^n Fn[2, 1] end println([fib(n) for n in 0:38]) # Peter Luschny, Feb 23 2017
-
Julia
# faster function fibrec(n::Int) n == 0 && return (BigInt(0), BigInt(1)) a, b = fibrec(div(n, 2)) c = a * (b * 2 - a) d = a * a + b * b iseven(n) ? (c, d) : (d, c + d) end fibonacci(n::Int) = fibrec(n)[1] println([fibonacci(n) for n in 0:40]) # Peter Luschny, Apr 03 2022
-
Magma
[Fibonacci(n): n in [0..38]];
-
Maple
A000045 := proc(n) combinat[fibonacci](n); end; ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 1)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..38); # Zerinvary Lajos, Apr 04 2008 spec := [B, {B=Sequence(Set(Z, card>1))}, unlabeled ]: seq(combstruct[count](spec, size=n), n=1..39); # Zerinvary Lajos, Apr 04 2008 # The following Maple command isFib(n) yields true or false depending on whether n is a Fibonacci number or not. with(combinat): isFib := proc(n) local a: a := proc(n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc: evalb(a(n) = n) end proc: # Emeric Deutsch, Nov 11 2014
-
Mathematica
Table[Fibonacci[k], {k, 0, 50}] (* Mohammad K. Azarian, Jul 11 2015 *) Table[2^n Sqrt @ Product[(Cos[Pi k/(n + 1)]^2 + 1/4), {k, n}] // FullSimplify, {n, 15}]; (* Kasteleyn's formula specialized, Sarah-Marie Belcastro, Jul 04 2009 *) LinearRecurrence[{1, 1}, {0, 1}, 40] (* Harvey P. Dale, Aug 03 2014 *) Fibonacci[Range[0, 20]] (* Eric W. Weisstein, Sep 22 2017 *) CoefficientList[Series[-(x/(-1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 22 2017 *)
-
Maxima
makelist(fib(n),n,0,100); /* Martin Ettl, Oct 21 2012 */
-
PARI
a(n) = fibonacci(n)
-
PARI
a(n) = imag(quadgen(5)^n)
-
PARI
a(n)=my(phi=quadgen(5));(phi^n-(-1/phi)^n)/(2*phi-1) \\ Charles R Greathouse IV, Jun 17 2012
-
PARI
is_A000045=A010056 \\ Characteristic function: see there. - M. F. Hasler, Feb 21 2025
-
Python
# From Jaap Spies, Jan 05 2007, updated by Peter Luschny, Feb 21 2023: from itertools import islice def fib_gen(): x, y = 0, 1 while True: yield x x, y = y, x + y fib_list = lambda n: list(islice(fib_gen(), n))
-
Python
is_A000045 = A010056 # See there: Characteristic function. Used e.g. in A377092. A000045 = lambda n: (4<
M. F. Hasler, improving old code from 2023, Feb 20 2025 -
Python
[(i:=-1)+(j:=1)] + [(j:=i+j)+(i:=j-i) for in range(100)] # _Jwalin Bhatt, Apr 03 2025
-
Sage
# Demonstration program from Jaap Spies: a = sloane.A000045; # choose sequence print(a) # This returns the name of the sequence. print(a(38)) # This returns the 38th term of the sequence. print(a.list(39)) # This returns a list of the first 39 terms.
-
Sage
a = BinaryRecurrenceSequence(1,1); print([a(n) for n in range(20)]) # Closed form integer formula with F(1) = 0 from Paul Hankin (see link). F = lambda n: (4<<(n-1)*(n+2))//((4<<2*(n-1))-(2<<(n-1))-1)&((2<<(n-1))-1) print([F(n) for n in range(20)]) # Peter Luschny, Aug 28 2016
-
Sage
print(list(fibonacci_sequence(0, 40))) # Bruno Berselli, Jun 26 2014
-
Scala
def fibonacci(n: BigInt): BigInt = { val zero = BigInt(0) def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match { case `zero` => a case _ => fibTail(n - 1, b, a + b) } fibTail(n, 0, 1) } // Based on "Case 3: Tail Recursion" from Carrasquel (2016) link (0 to 49).map(fibonacci()) // _Alonso del Arte, Apr 13 2019
Formula
G.f.: x / (1 - x - x^2).
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - Paul D. Hanna, Oct 26 2013
F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).
Alternatively, F(n) = ((1/2+sqrt(5)/2)^n - (1/2-sqrt(5)/2)^n)/sqrt(5).
F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).
F(n) = round(phi^n/sqrt(5)).
F(n+1) = Sum_{j=0..floor(n/2)} binomial(n-j, j).
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017
E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Len Smiley, Nov 30 2001
[0 1; 1 1]^n [0 1] = [F(n); F(n+1)]
x | F(n) ==> x | F(kn).
A sufficient condition for F(m) to be divisible by a prime p is (p - 1) divides m, if p == 1 or 4 (mod 5); (p + 1) divides m, if p == 2 or 3 (mod 5); or 5 divides m, if p = 5. (This is essentially Theorem 180 in Hardy and Wright.) - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 29 2001
a(n)=F(n) has the property: F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1). - Miklos Kristof, Nov 13 2003
From Kurmang. Aziz. Rashid, Feb 21 2004: (Start)
Conjecture 1: for n >= 2, sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2*(-1)^n) = (F(2n+1) + 2*(-1)^n)/F(n-1). [For a proof see Comments section.]
Conjecture 2: for n >= 0, (F(n+2)*F(n+3)) - (F(n+1)*F(n+4)) + (-1)^n = 0.
[Two more conjectures removed by Peter Luschny, Nov 17 2017]
Theorem 1: for n >= 0, (F(n+3)^ 2 - F(n+1)^ 2)/F(n+2) = (F(n+3)+ F(n+1)).
Theorem 2: for n >= 0, F(n+10) = 11*F(n+5) + F(n).
Theorem 3: for n >= 6, F(n) = 4*F(n-3) + F(n-6). (End)
Conjecture 2 of Rashid is actually a special case of the general law F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1) (take n <- n+1 and m <- -(n+4) in this law). - Harmel Nestra (harmel.nestra(AT)ut.ee), Apr 22 2005
Conjecture 2 of Rashid Kurmang simplified: F(n)*F(n+3) = F(n+1)*F(n+2)-(-1)^n. Follows from d'Ocagne's identity: m=n+2. - Alex Ratushnyak, May 06 2012
Conjecture: for all c such that 2-phi <= c < 2*(2-phi) we have F(n) = floor(phi*a(n-1)+c) for n > 2. - Gerald McGarvey, Jul 21 2004
For x > phi, Sum_{n>=0} F(n)/x^n = x/(x^2 - x - 1). - Gerald McGarvey, Oct 27 2004
F(n+1) = exponent of the n-th term in the series f(x, 1) determined by the equation f(x, y) = xy + f(xy, x). - Jonathan Sondow, Dec 19 2004
a(n-1) = Sum_{k=0..n} (-1)^k*binomial(n-ceiling(k/2), floor(k/2)). - Benoit Cloitre, May 05 2005
a(n) = Sum_{k=0..n} abs(A108299(n, k)). - Reinhard Zumkeller, Jun 01 2005
F(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Fibonacci(n) = Product_{j=1..ceiling(n/2)-1} (1 + 4(cos(j*Pi/n))^2). [Bicknell and Hoggatt, pp. 47-48.] - Emeric Deutsch, Oct 15 2006
F(n) = 2^-(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)*5^k. - Hieronymus Fischer, Feb 07 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A001629. - Sergio Falcon, Nov 22 2006
F(n*m) = Sum_{k = 0..m} binomial(m,k)*F(n-1)^k*F(n)^(m-k)*F(m-k). The generating function of F(n*m) (n fixed, m = 0,1,2,...) is G(x) = F(n)*x / ((1 - F(n-1)*x)^2 - F(n)*x*(1 - F(n-1)*x) - (F(n)*x)^2). E.g., F(15) = 610 = F(5*3) = binomial(3,0)* F(4)^0*F(5)^3*F(3) + binomial(3,1)* F(4)^1*F(5)^2*F(2) + binomial(3,2)* F(4)^2*F(5)^1*F(1) + binomial(3,3)* F(4)^3*F(5)^0*F(0) = 1*1*125*2 + 3*3*25*1 + 3*9*5*1 + 1*27*1*0 = 250 + 225 + 135 + 0 = 610. - Miklos Kristof, Feb 12 2007
From Miklos Kristof, Mar 19 2007: (Start)
Let L(n) = A000032(n) = Lucas numbers. Then:
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m);
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m);
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k);
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 5*F(n)*F(m)*F(k). (End)
A corollary to Kristof 2007 is 2*F(a+b) = F(a)*L(b) + L(a)*F(b). - Graeme McRae, Apr 24 2014
For n > m, the sum of the 2m consecutive Fibonacci numbers F(n-m-1) thru F(n+m-2) is F(n)*L(m) if m is odd, and L(n)*F(m) if m is even (see the McRae link). - Graeme McRae, Apr 24 2014.
F(n) = b(n) + (p-1)*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital sum analog of the Fibonacci recurrence, defined by b(k) = ds_p(b(k-1)) + ds_p(b(k-2)), b(0)=0, b(1)=1, ds_p=digital sum base p. Example for base p=10: F(n) = A010077(n) + 9*Sum_{k=2..n-1} A059995(A010077(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
F(n) = b(n)+p*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital product analog of the Fonacci recurrence, defined by b(k) = dp_p(b(k-1)) + dp_p(b(k-2)), b(0)=0, b(1)=1, dp_p=digital product base p. Example for base p=10: F(n) = A074867(n) + 10*Sum_{k=2..n-1} A059995(A074867(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
a(n) = denominator of continued fraction [1,1,1,...] (with n ones); e.g., 2/3 = continued fraction [1,1,1]; where barover[1] = [1,1,1,...] = 0.6180339.... - Gary W. Adamson, Nov 29 2007
F(n + 3) = 2F(n + 2) - F(n), F(n + 4) = 3F(n + 2) - F(n), F(n + 8) = 7F(n + 4) - F(n), F(n + 12) = 18F(n + 6) - F(n). - Paul Curtz, Feb 01 2008
a(2^n) = Product_{i=0..n-2} B(i) where B(i) is A001566. Example 3*7*47 = F(16). - Kenneth J Ramsey, Apr 23 2008
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-1)^(n-k). -Philippe Deléham, Oct 26 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}... Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n), where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i + l_(i+1) >= 2 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n+1) = 2^n sqrt(Product_{k=1..n} cos(k Pi/(n+1))^2+1/4) (Kasteleyn's formula specialized). - Sarah-Marie Belcastro, Jul 04 2009
a(n+1) = Sum_{k=floor(n/2) mod 5} C(n,k) - Sum_{k=floor((n+5)/2) mod 5} C(n,k) = A173125(n) - A173126(n) = |A054877(n)-A052964(n-1)|. - Henry Bottomley, Feb 10 2010
If p[i] = modp(i,2) and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, May 02 2010
Limit_{k->oo} F(k+n)/F(k) = (L(n) + F(n)*sqrt(5))/2 with the Lucas numbers L(n) = A000032(n). - Johannes W. Meijer, May 27 2010
For n >= 1, F(n) = round(log_2(2^(phi*F(n-1)) + 2^(phi*F(n-2)))), where phi is the golden ratio. - Vladimir Shevelev, Jun 24 2010, Jun 27 2010
For n >= 1, a(n+1) = ceiling(phi*a(n)), if n is even and a(n+1) = floor(phi*a(n)), if n is odd (phi = golden ratio). - Vladimir Shevelev, Jul 01 2010
a(n) = 2*a(n-2) + a(n-3), n > 2. - Gary Detlefs, Sep 08 2010
a(2^n) = Product_{i=0..n-1} A000032(2^i). - Vladimir Shevelev, Nov 28 2010
a(n)^2 - a(n-1)^2 = a(n+1)*a(n-2), see A121646.
a(n) = sqrt((-1)^k*(a(n+k)^2 - a(k)*a(2n+k))), for any k. - Gary Detlefs, Dec 03 2010
F(2*n) = F(n+2)^2 - F(n+1)^2 - 2*F(n)^2. - Richard R. Forberg, Jun 04 2011
From Artur Jasinski, Nov 17 2011: (Start)
(-1)^(n+1) = F(n)^2 + F(n)*F(1+n) - F(1+n)^2.
F(n) = F(n+2) - 1 + (F(n+1))^4 + 2*(F(n+1)^3*F(n+2)) - (F(n+1)*F(n+2))^2 - 2*F(n+1)(F(n+2))^3 + (F(n+2))^4 - F(n+1). (End)
F(n) = 1 + Sum_{x=1..n-2} F(x). - Joseph P. Shoulak, Feb 05 2012
F(n) = 4*F(n-2) - 2*F(n-3) - F(n-6). - Gary Detlefs, Apr 01 2012
F(n) = round(phi^(n+1)/(phi+2)). - Thomas Ordowski, Apr 20 2012
From Sergei N. Gladkovskii, Jun 03 2012: (Start)
G.f.: A(x) = x/(1-x-x^2) = G(0)/sqrt(5) where G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*c^k/G(k+1))) and a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
Let E(x) be the e.g.f., i.e.,
E(x) = 1*x + (1/2)*x^2 + (1/3)*x^3 + (1/8)*x^4 + (1/24)*x^5 + (1/90)*x^6 + (13/5040)*x^7 + ...; then
E(x) = G(0)/sqrt(5); G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*(k+1)*c^k/G(k+1))), where a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
(End)
From Hieronymus Fischer, Nov 30 2012: (Start)
F(n) = 1 + Sum_{j_1=1..n-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} 1 + ... + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} ... Sum_{j_k=1..j_(k-1)-2} 1, where k = floor((n-1)/2).
Example: F(6) = 1 + Sum_{j=1..4} 1 + Sum_{j=1..4} Sum_{k=1..(j-2)} 1 + 0 = 1 + (1 + 1 + 1 + 1) + (1 + (1 + 1)) = 8.
F(n) = Sum_{j=0..k} S(j+1,n-2j), where k = floor((n-1)/2) and the S(j,n) are the n-th j-simplex sums: S(1,n) = 1 is the 1-simplex sum, S(2,n) = Sum_{k=1..n} S(1,k) = 1+1+...+1 = n is the 2-simplex sum, S(3,n) = Sum_{k=1..n} S(2,k) = 1+2+3+...+n is the 3-simplex sum (= triangular numbers = A000217), S(4,n) = Sum_{k=1..n} S(3,k) = 1+3+6+...+n(n+1)/2 is the 4-simplex sum (= tetrahedral numbers = A000292) and so on.
Since S(j,n) = binomial(n-2+j,j-1), the formula above equals the well-known binomial formula, essentially. (End)
G.f.: A(x) = x / (1 - x / (1 - x / (1 + x))). - Michael Somos, Jan 04 2013
Sum_{n >= 1} (-1)^(n-1)/(a(n)*a(n+1)) = 1/phi (phi=golden ratio). - Vladimir Shevelev, Feb 22 2013
From Raul Prisacariu, Oct 29 2023: (Start)
For odd k, Sum_{n >= 1} a(k)^2*(-1)^(n-1)/(a(k*n)*a(k*n+k)) = phi^(-k).
For even k, Sum_{n >= 1} a(k)^2/(a(k*n)*a(k*n+k)) = phi^(-k). (End)
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = (a(n) + sqrt(5*(a(n))^2 + 4*(-1)^n))/2;
(2) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(3) a(n)/a(n+1) = 1/phi + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
F(n+1) = F(n)/2 + sqrt((-1)^n + 5*F(n)^2/4), n >= 0. F(n+1) = U_n(i/2)/i^n, (U:= Chebyshev polynomial of the 2nd kind, i=sqrt(-1)). - Bill Gosper, Mar 04 2013
G.f.: -Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: x - 1 - 1/x + (1/x)/Q(0), where Q(k) = 1 - (k+1)*x/(1 - x/(x - (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
G.f.: x*G(0), where G(k) = 1 + x*(1+x)/(1 - x*(1+x)/(x*(1+x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: x^2 - 1 + 2*x^2/(W(0)-2), where W(k) = 1 + 1/(1 - x*(k + x)/( x*(k+1 + x) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0) - 1, where Q(k) = 1 + x^2 + (k+2)*x - x*(k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
Let b(n) = b(n-1) + b(n-2), with b(0) = 0, b(1) = phi. Then, for n >= 2, F(n) = floor(b(n-1)) if n is even, F(n) = ceiling(b(n-1)), if n is odd, with convergence. - Richard R. Forberg, Jan 19 2014
a(n) = Sum_{t1*g(1)+t2*g(2)+...+tn*g(n)=n} multinomial(t1+t2+...+tn,t1,t2,...,tn), where g(k)=2*k-1. - Mircea Merca, Feb 27 2014
F(n) = round(sqrt(F(n-1)^2 + F(n)^2 + F(n+1)^2)/2), for n > 0. This rule appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Jul 27 2014
F(n) = round(2/(1/F(n) + 1/F(n+1) + 1/F(n+2))), for n > 0. This rule also appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Aug 03 2014
F(n) = round(1/(Sum_{j>=n+2} 1/F(j))). - Richard R. Forberg, Aug 14 2014
a(n) = hypergeometric([-n/2+1/2, -n/2+1], [-n+1], -4) for n >= 2. - Peter Luschny, Sep 19 2014
Limit_{n -> oo} (log F(n+1)/log F(n))^n = e. - Thomas Ordowski, Oct 06 2014
F(n) = (L(n+1)^2 - L(n-1)^2)/(5*L(n)), where L(n) is A000032(n), with a similar inverse relationship. - Richard R. Forberg, Nov 17 2014
Consider the graph G[1-vertex;1-loop,2-loop] in comment above. Construct the power matrix array T(n,j) = [A^*j]*[S^*(j-1)] where A=(1,1,0,...) and S=(0,1,0,...)(A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). Then T(n,j) counts n-walks containing (j) loops and a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Nov 21 2014
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n) = F(k)*F(n-k+3) - F(k-1)*F(n-k+2) - F(k-2)*F(n-k) + (-1)^k*F(n-2k+2). - Charlie Marion, Dec 04 2014
F(n+k)^2 - L(k)*F(n)*F(n+k) + (-1)^k*F(n)^2 = (-1)^n*F(k)^2, if L(k) = A000032(k). - Alexander Samokrutov, Jul 20 2015
F(2*n) = F(n+1)^2 - F(n-1)^2, similar to Koshy (D) and Forberg 2011, but different. - Hermann Stamm-Wilbrandt, Aug 12 2015
F(n+1) = ceiling( (1/phi)*Sum_{k=0..n} F(k) ). - Tom Edgar, Sep 10 2015
a(n) = (L(n-3) + L(n+3))/10 where L(n)=A000032(n). - J. M. Bergot, Nov 25 2015
From Bob Selcoe, Mar 27 2016: (Start)
F(n) = (F(2n+k+1) - F(n+1)*F(n+k+1))/F(n+k), k >= 0.
Thus when k=0: F(n) = sqrt(F(2n+1) - F(n+1)^2).
F(n) = (F(3n) - F(n+1)^3 + F(n-1)^3)^(1/3).
F(n+2k) = binomial transform of any subsequence starting with F(n). Example F(6)=8: 1*8 = F(6)=8; 1*8 + 1*13 = F(8)=21; 1*8 + 2*13 + 1*21 = F(10)=55; 1*8 + 3*13 + 3*21 + 1*34 = F(12)=144, etc. This formula applies to Fibonacci-type sequences with any two seed values for a(0) and a(1) (e.g., Lucas sequence A000032: a(0)=2, a(1)=1).
(End)
F(n) = L(k)*F(n-k) + (-1)^(k+1)*F(n-2k) for all k >= 0, where L(k) = A000032(k). - Anton Zakharov, Aug 02 2016
From Ilya Gutkovskiy, Aug 03 2016: (Start)
a(n) = F_n(1), where F_n(x) are the Fibonacci polynomials.
Inverse binomial transform of A001906.
Number of zeros in substitution system {0 -> 11, 1 -> 1010} at step n from initial string "1" (1 -> 1010 -> 101011101011 -> ...) multiplied by 1/A000079(n). (End)
For n >= 2, a(n) = 2^(n^2+n) - (4^n-2^n-1)*floor(2^(n^2+n)/(4^n-2^n-1)) - 2^n*floor(2^(n^2) - (2^n-1-1/2^n)*floor(2^(n^2+n)/(4^n-2^n-1))). - Benoit Cloitre, Apr 17 2017
f(n+1) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2j,k)*binomial(j,k). - Tony Foster III, Sep 04 2017
F(n) = Sum_{k=0..floor((n-1)/2)} ( (n-k-1)! / ((n-2k-1)! * k!) ). - Zhandos Mambetaliyev, Nov 08 2017
For x even, F(n) = (F(n+x) + F(n-x))/L(x). For x odd, F(n) = (F(n+x) - F(n-x))/L(x) where n >= x in both cases. Therefore F(n) = F(2*n)/L(n) for n >= 0. - David James Sycamore, May 04 2018
From Isaac Saffold, Jul 19 2018: (Start)
Let [a/p] denote the Legendre symbol. Then, for an odd prime p:
F(p+n) == [5/p]*F([5/p]+n) (mod p), if [5/p] = 1 or -1.
F(p+n) == 3*F(n) (mod p), if [5/p] = 0 (i.e., p = 5).
This is true for negative-indexed terms as well, if this sequence is extended by the negafibonacci numbers (i.e., F(-n) = A039834(n)). (End)
a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) = A109754(0, n) = A109754(1, n-1), for n > 0.
F(n) = F(k-1)*F(abs(n-k-2)) + F(k-1)*F(n-k-1) + F(k)*F(abs(n-k-2)) + 2*F(k)*F(n-k-1), for n > k > 0. - Joseph M. Shunia, Aug 12 2019
F(n) = F(n-k+2)*F(k-1) + F(n-k+1)*F(k-2) for all k such that 2 <= k <= n. - Michael Tulskikh, Oct 09 2019
F(n)^2 - F(n+k)*F(n-k) = (-1)^(n+k) * F(k)^2 for 2 <= k <= n [Catalan's identity]. - Hermann Stamm-Wilbrandt, May 07 2021
Sum_{n>=1} 1/a(n) = A079586 is the reciprocal Fibonacci constant. - Gennady Eremin, Aug 06 2021
a(n) = Product_{d|n} b(d) = Product_{k=1..n} b(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} b(n/gcd(n,k))^(1/phi(n/gcd(n,k))) where b(n) = A061446(n) = primitive part of a(n), phi(n) = A000010(n). - Richard L. Ollerton, Nov 08 2021
a(n) = 2*i^(1-n)*sin(n*arccos(i/2))/sqrt(5), i=sqrt(-1). - Bill Gosper, May 05 2022
a(n) = i^(n-1)*sin(n*c)/sin(c) = i^(n-1)*sin(c*n)*csc(c), where c = Pi/2 + i*arccsch(2). - Peter Luschny, May 23 2022
F(2n) = Sum_{k=1..n} (k/5)*binomial(2n, n+k), where (k/5) is the Legendre or Jacobi Symbol; F(2n+1)= Sum_{k=1..n} (-(k+2)/5)*binomial(2n+1, n+k), where (-(k+2)/5) is the Legendre or Jacobi Symbol. For example, F(10) = 1*binomial(10,6) - 1*binomial(10,7) - 1*binomial(10,8) + 1*binomial(10,9) + 0*binomial(10,10), F(11) = 1*binomial(11,6) - 1*binomial(11,7) + 0*binomial(11,8) - 1*binomial(11,9) + 1*binomial(11,10) + 1*binomial(11,11). - Yike Li, Aug 21 2022
For n > 0, 1/F(n) = Sum_{k>=1} F(n*k)/(F(n+2)^(k+1)). - Diego Rattaggi, Oct 26 2022
From Andrea Pinos, Dec 02 2022: (Start)
For n == 0 (mod 4): F(n) = F((n+2)/2)*( F(n/2) + F((n/2)-2) ) + 1;
For n == 1 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) + 1;
For n == 2 (mod 4): F(n) = F((n-2)/2)*( F(n/2) + F((n/2)+2) ) + 1;
For n == 3 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) - 1. (End)
F(n) = Sum_{i=0..n-1} F(i)^2 / F(n-1). - Jules Beauchamp, May 03 2025
Comments