A127259
Sequence arising from the factorization of F(n)=A002605 and L(n)=A080040 F(0)=0, F(1)=1, F(n)=2*F(n-1)+2*F(n-2), L(0)=2, L(1)=2, L(n)=2*L(n-1)+2*L(n-2).
Original entry on oeis.org
2, 1, 10, 8, 76, 6, 568, 56, 424, 44, 31648, 52, 236224, 328, 2320, 3104, 13160704, 408, 98232832, 2896, 129088, 18272, 5472827392, 3088, 537496576, 136384, 71911936, 161344, 2275853910016, 3856, 16987204845568
Offset: 1
F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*10*8*6*52=49920
F(9)=a(2)*a(6)*a(18)= 1*6*408=2448
L(12)=a(8)*a(24)=56*3088=172928
L(21)=a(1)*a(3)*a(7)*a(21)=2*10*568*129088=1466439680
-
with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(3)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,2+sqrt(3)),30)) od: seq(a[n],n=1..60);
A174510
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A080040(n)) ), where A080040(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.
Original entry on oeis.org
1, 1, 3, 1, 9, 13, 1, 37, 51, 1, 141, 193, 1, 529, 723, 1, 1977, 2701, 1, 7381, 10083, 1, 27549, 37633, 1, 102817, 140451, 1, 383721, 524173, 1, 1432069, 1956243, 1, 5344557, 7300801, 1, 19946161, 27246963, 1, 74440089, 101687053, 1, 277814197
Offset: 0
Let L = Sum_{n>=1} 1/(n*A080040(n)) or, more explicitly,
L = 1/2 + 1/(2*8) + 1/(3*20) + 1/(4*56) + 1/(5*152) + 1/(6*416) +...
so that L = 0.5855329921665857283309456463364081071245363598803...
then exp(L) = 1.7959479567807442397990076546690432122217738278933...
equals the continued fraction given by this sequence:
exp(L) = [1;1,3,1,9,13,1,37,51,1,141,193,1,529,723,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(3 + 1/(1 + 1/(9 + 1/(13 + 1/(1 +...)))))).
Compare these partial quotients to A080040(n)/2^[n/2], n=1,2,3,...:
[2,4,10,14,38,52,142,194,530,724,1978,2702,7382,10084,27550,...],
where A080040 begins:
[2,8,20,56,152,416,1136,3104,8480,23168,63296,172928,472448,...].
A002605
a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 49920, 136384, 372608, 1017984, 2781184, 7598336, 20759040, 56714752, 154947584, 423324672, 1156544512, 3159738368, 8632565760, 23584608256, 64434348032, 176037912576, 480944521216, 1313964867584
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 8, 29.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
- M. Diepenbroek, M. Maus, and A. Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Dale Gerdemann Bird Flock, Youtube video, 2011.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 476
- D. Jhala, G. P. S. Rathore, and K. Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 4, 119-124.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eqs. (39), (41) and (45), lhs, m=2.
- D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, Journal of the London Mathematical Society 1.3 (1935): 162-165. See U_n.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Alan Prince, Counting parses, Rutgers Optimality Archive, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for Lucas sequences.
First differences are given by
A026150.
a(n) =
A073387(n, 0), n>=0 (first column of triangle).
a(n) =
A028860(n)/2 apart from the initial terms.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
Cf.
A080953,
A052948,
A080040,
A028859,
A030195,
A106435,
A108898,
A125145,
A265106,
A265107,
A265278,
A270810,
A293005,
A293006,
A293007.
-
a002605 n = a002605_list !! n
a002605_list =
0 : 1 : map (* 2) (zipWith (+) a002605_list (tail a002605_list))
-- Reinhard Zumkeller, Oct 15 2011
-
[Floor(((1 + Sqrt(3))^n - (1 - Sqrt(3))^n)/(2*Sqrt(3))): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
-
[n le 2 select n-1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+2*a[n-2]od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 15 2008
a := n -> `if`(n<3, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -2));
seq(simplify(a(n)), n=0..29); # Peter Luschny, Dec 16 2015
-
Expand[Table[((1 + Sqrt[3])^n - (1 - Sqrt[3])^n)/(2Sqrt[3]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{2, 2}, {0, 1}, 30] (* Robert G. Wilson v, Apr 13 2013 *)
Round@Table[Fibonacci[n, Sqrt[2]] 2^((n - 1)/2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
nxt[{a_,b_}]:={b,2(a+b)}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
-
Vec(x/(1-2*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
-
A002605(n)=([2,2;1,0]^n)[2,1] \\ M. F. Hasler, Aug 06 2018
-
[lucas_number1(n,2,-2) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
-
a = BinaryRecurrenceSequence(2,2)
print([a(n) for n in (0..29)]) # Peter Luschny, Aug 29 2016
A026150
a(0) = a(1) = 1; a(n+2) = 2*a(n+1) + 2*a(n).
Original entry on oeis.org
1, 1, 4, 10, 28, 76, 208, 568, 1552, 4240, 11584, 31648, 86464, 236224, 645376, 1763200, 4817152, 13160704, 35955712, 98232832, 268377088, 733219840, 2003193856, 5472827392, 14952042496, 40849739776
Offset: 0
G.f. = 1 + x + 4*x^2 + 10*x^3 + 28*x^4 + 76*x^5 + 208*x^6 + 568*x^7 + ...
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- A. Burstein, S. Kitaev and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.
- Guillaume Escamocher and Barry O'Sullivan, Three-Dimensional Matching Instances Are Rich in Stable Matchings, CPAIOR 2018, pages 182-197.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1052
- Tanya Khovanova, Recursive Sequences
- Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98-118.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
- Index entries for sequences related to Chebyshev polynomials.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
Cf.
A001075,
A001834,
A083337,
A002605,
A143908,
A028859,
A030195,
A106435,
A108898,
A125145,
A053120.
-
a026150 n = a026150_list !! n
a026150_list = 1 : 1 : map (* 2) (zipWith (+) a026150_list (tail
a026150_list))
-- Reinhard Zumkeller, Oct 15 2011
-
[n le 2 select 1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
with(combstruct):ZL0:=S=Prod(Sequence(Prod(a, Sequence(b))), a):ZL1:=Prod(begin_blockP, Z, end_blockP):ZL2:=Prod(begin_blockLR, Z, Sequence(Prod(mu_length, Z), card>=1), end_blockLR): ZL3:=Prod(begin_blockRL, Sequence(Prod(mu_length, Z), card>=1), Z, end_blockRL):Q:=subs([a=Union(ZL2,ZL2,ZL2), b=ZL1], ZL0), begin_blockP=Epsilon, end_blockP=Epsilon, begin_blockLR=Epsilon, end_blockLR=Epsilon, begin_blockRL=Epsilon, end_blockRL=Epsilon, mu_length=Epsilon:temp15:=draw([S, {Q}, unlabelled], size=15):seq(count([S, {Q}, unlabelled], size=n)/3, n=2..27); # Zerinvary Lajos, Mar 08 2008
-
Expand[Table[((1 + Sqrt[3])^n + (1 - Sqrt[3])^n)/(2), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
LinearRecurrence[{2, 2}, {1, 1}, 30] (* T. D. Noe, Mar 25 2011 *)
Round@Table[LucasL[n, Sqrt[2]] 2^(n/2 - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
-
a(n) := if n<=1 then 1 else 2*a(n-1)+2*a(n-2);
makelist(a(n),n,0,20); /* Emanuele Munarini, Apr 14 2017 */
-
{a(n) = if( n<0, 0, real((1 + quadgen(12))^n))};
-
from sage.combinat.sloane_functions import recur_gen2; it = recur_gen2(1,1,2,2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
-
[lucas_number2(n,2,-2)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
A030195
a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 3, 12, 45, 171, 648, 2457, 9315, 35316, 133893, 507627, 1924560, 7296561, 27663363, 104879772, 397629405, 1507527531, 5715470808, 21668995017, 82153397475, 311467177476, 1180861724853, 4476986706987, 16973545295520
Offset: 0
G.f. = x + 3*x^2 + 12*x^3 + 45*x^4 + 171*x^5 + 648*x^6 + 2457*x^7 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=3.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (39), (41) and (45), rhs, m=3.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (3,3).
-
a030195 n = a030195_list !! n
a030195_list =
0 : 1 : map (* 3) (zipWith (+) a030195_list (tail a030195_list))
-- Reinhard Zumkeller, Oct 14 2011
-
I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) + 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
CoefficientList[Series[1/(1-3x-3x^2), {x, 0, 25}], x] (* Zerinvary Lajos, Mar 22 2007 *)
LinearRecurrence[{3, 3}, {0, 1}, 24] (* Or *)
RecurrenceTable[{a[n] == 3 a[n - 1] + 3 a[n - 2], a[0] == 0, a[1] == 1}, a, {n, 0, 23}] (* Robert G. Wilson v, Aug 18 2012 *)
-
{a(n) = n--; polchebyshev(n, 2, I*sqrt(3)/2) * (-I*sqrt(3))^n};
-
[lucas_number1(n,3,-3) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
I simplified the definition. As a result the offsets in some of the formulas may need to shifted by 1. -
N. J. A. Sloane, Apr 01 2006
A028859
a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 73).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2025. See p. 14.
- Joerg Arndt, Matters Computational (The Fxtbook), section 14.9 "Strings with no two consecutive zeros", pp.318-320.
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
- Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 Example 7.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- P. Z. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- J. Shallit, Proof of Irvine's conjecture via mechanized guessing, arXiv preprint arXiv:2310.14252 [math.CO], October 22 2023.
- Eric Weisstein's World of Mathematics, Centipede Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Cf.
A155020 (same sequence with term 1 prepended).
-
a028859 n = a028859_list !! n
a028859_list =
1 : 3 : map (* 2) (zipWith (+) a028859_list (tail a028859_list))
-- Reinhard Zumkeller, Oct 15 2011
-
a[0]:=1:a[1]:=3:for n from 2 to 24 do a[n]:=2*a[n-1]+2*a[n-2] od: seq(a[n],n=0..24); # Emeric Deutsch
-
a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Table[2^(n - 1) Hypergeometric2F1[(1 - n)/2, -n/2, -n, -2], {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
LinearRecurrence[{2, 2}, {1, 3}, 20] (* Eric W. Weisstein, Jun 14 2017 *)
-
a(n)=([1,3;1,1]^n*[2;1])[2,1] \\ Charles R Greathouse IV, Mar 27 2012
-
A028859(n)=([1,1]*[2,2;1,0]^n)[1] \\ M. F. Hasler, Aug 06 2018
A002531
a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1); a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 2, 5, 7, 19, 26, 71, 97, 265, 362, 989, 1351, 3691, 5042, 13775, 18817, 51409, 70226, 191861, 262087, 716035, 978122, 2672279, 3650401, 9973081, 13623482, 37220045, 50843527, 138907099, 189750626, 518408351, 708158977, 1934726305
Offset: 0
1 + 1/(1 + 1/(2 + 1/(1 + 1/2))) = 19/11 so a(5) = 19.
Convergents are 1, 2, 5/3, 7/4, 19/11, 26/15, 71/41, 97/56, 265/153, 362/209, 989/571, 1351/780, 3691/2131, ... = A002531/A002530.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 7*x^4 + 19*x^5 + 26*x^6 + 71*x^7 + ... - _Michael Somos_, Mar 22 2022
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 181.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
- Harry J. Smith, Table of n, a(n) for n = 0..2000
- MacTutor, D'Arcy Thompson on Greek irrationals
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Albert Tarn, Approximations to certain square roots and the series of numbers connected therewith [Annotated scanned copy]
- D'Arcy Thompson, Excess and Defect: Or the Little More and the Little Less, Mind, New Series, Vol. 38, No. 149 (Jan., 1929), pp. 43-55 (13 pages). See page 48.
- Hein van Winkel, Q-quadrangles inscribed in a circle, 2014. See Table 1. [Reference from Antreas Hatzipolakis, Jul 14 2014]
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
a:=[1,1,2,5];; for n in [5..40] do a[n]:=4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Nov 16 2018
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1 +x-2*x^2+x^3)/(1-4*x^2+x^4))); // G. C. Greubel, Nov 16 2018
-
A002531 := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif type(n,odd) then A002531(n-1)+A002531(n-2) else 2*A002531(n-1)+A002531(n-2) fi; end; [ seq(A002531(n), n=0..50) ];
with(numtheory): tp := cfrac (tan(Pi/3),100): seq(nthnumer(tp,i), i=-1..32 ); # Zerinvary Lajos, Feb 07 2007
A002531:=(1+z-2*z**2+z**3)/(1-4*z**2+z**4); # Simon Plouffe; see his 1992 dissertation
-
Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[3], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 01 2006 *)
Join[{1},Numerator[Convergents[Sqrt[3],40]]] (* Harvey P. Dale, Jan 23 2012 *)
CoefficientList[Series[(1 + x - 2 x^2 + x^3)/(1 - 4 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 01 2014 *)
LinearRecurrence[{0, 4, 0, -1}, {1, 1, 2, 5}, 35] (* Robert G. Wilson v, Feb 11 2018 *)
a[ n_] := ChebyshevT[n, Sqrt[-1/2]]*Sqrt[2]^Mod[n,2]/I^n //Simplify; (* Michael Somos, Mar 22 2022 *)
a[ n_] := If[n<0, (-1)^n*a[-n], SeriesCoefficient[ (1 + x - 2*x^2 + x^3) / (1 - 4*x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Sep 23 2024 *)
-
a(n)=contfracpnqn(vector(n,i,1+(i>1)*(i%2)))[1,1]
-
apply( {A002531(n,w=quadgen(12))=real((2+w)^(n\/2)*if(bittest(n, 0), w-1, 1))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
-
{a(n) = if(n<0, (-1)^n*a(-n), polcoeff( (1 + x - 2*x^2 + x^3) / (1 - 4*x^2 + x^4) + x*O(x^n), n))}; /* Michael Somos, Sep 23 2024 */
-
s=((1+x-2*x^2+x^3)/(1-4*x^2+x^4)).series(x,40); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
A125145
a(n) = 3a(n-1) + 3a(n-2). a(0) = 1, a(1) = 4.
Original entry on oeis.org
1, 4, 15, 57, 216, 819, 3105, 11772, 44631, 169209, 641520, 2432187, 9221121, 34959924, 132543135, 502509177, 1905156936, 7222998339, 27384465825, 103822392492, 393620574951, 1492328902329, 5657848431840, 21450532002507
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2025. See p. 14.
- Joerg Arndt, Matters Computational (The Fxtbook)
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 7.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,3).
Cf.
A028859 = a(n+2) = 2 a(n+1) + 2 a(n);
A086347 = On a 3 X 3 board, number of n-move routes of chess king ending at a given side cell. a(n) = 4a(n-1) + 4a(n-2).
-
a125145 n = a125145_list !! n
a125145_list =
1 : 4 : map (* 3) (zipWith (+) a125145_list (tail a125145_list))
-- Reinhard Zumkeller, Oct 15 2011
-
I:=[1,4]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
-
a[0]:=1: a[1]:=4: for n from 2 to 27 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n],n=0..27); # Emeric Deutsch, Feb 27 2007
A125145 := proc(n)
option remember;
if n <= 1 then
op(n+1,[1,4]) ;
else
3*(procname(n-1)+procname(n-2)) ;
end if;
end proc: # R. J. Mathar, Feb 13 2022
-
nn=23;CoefficientList[Series[(1+x)/(1-3x-3x^2),{x,0,nn}],x] (* Geoffrey Critzer, Feb 09 2014 *)
LinearRecurrence[{3,3},{1,4},30] (* Harvey P. Dale, May 01 2022 *)
A028860
a(n+2) = 2*a(n+1) + 2*a(n); a(0) = -1, a(1) = 1.
Original entry on oeis.org
-1, 1, 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 924
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,2).
-
a:=[-1,1];; for n in [3..30] do a[n]:=2*a[n-1]+2*a[n-2]; od; a; # Muniru A Asiru, Aug 07 2018
-
a028860 n = a028860_list !! n
a028860_list =
-1 : 1 : map (* 2) (zipWith (+) a028860_list (tail a028860_list))
-- Reinhard Zumkeller, Oct 15 2011
-
I:=[-1,1]; [n le 2 select I[n] else 2*Self(n-1)+2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2018
-
seq(coeff(series((3*x-1)/(1-2*x-2*x^2), x,n+1),x,n),n=0..30); # Muniru A Asiru, Aug 07 2018
-
(With a different offset) M = {{0, 2}, {1, 2}} v[1] = {0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}] (* Roger L. Bagula, May 29 2005 *)
LinearRecurrence[{2,2},{-1,1},40] (* Harvey P. Dale, Dec 13 2012 *)
CoefficientList[Series[(-3 x + 1)/(2 x^2 + 2 x - 1), {x, 0, 27}], x] (* Robert G. Wilson v, Aug 07 2018 *)
-
apply( A028860(n)=([2,2;1,0]^n)[2,]*[1,-1]~, [0..30]) \\ 15% faster than (A^n*[1,-1]~)[2]. - M. F. Hasler, Aug 06 2018
-
A028860 = BinaryRecurrenceSequence(2,2,-1,1)
[A028860(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
Edited and initial values added in definition by
M. F. Hasler, Aug 06 2018
A189732
a(1)=1, a(2)=5, a(n) = a(n-1) + 5*a(n-2).
Original entry on oeis.org
1, 5, 10, 35, 85, 260, 685, 1985, 5410, 15335, 42385, 119060, 330985, 926285, 2581210, 7212635, 20118685, 56181860, 156775285, 437684585, 1221561010, 3409983935, 9517788985, 26567708660, 74156653585, 206995196885, 577778464810, 1612754449235, 4501646773285
Offset: 1
Cf.
A000045,
A000079,
A105476,
A159612,
A080040,
A135522,
A103435,
A189734,
A189735,
A189736,
A189737,
A189738,
A189739,
A189741,
A189742,
A189743,
A189744,
A189745,
A189746,
A189747,
A189748,
A189749.
-
LinearRecurrence[{1,5},{1,5},40]
-
a[1]:1$ a[2]:5$ a[n]:=a[n-1]+5*a[n-2]$ makelist(a[n], n, 1, 29); /* Bruno Berselli, May 24 2011 */
-
a(n)=([0,1; 5,1]^(n-1)*[1;5])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
Showing 1-10 of 37 results.
Comments