cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A146983 a(n) = A002531(n)*A002531(n+1).

Original entry on oeis.org

1, 2, 10, 35, 133, 494, 1846, 6887, 25705, 95930, 358018, 1336139, 4986541, 18610022, 69453550, 259204175, 967363153, 3610248434, 13473630586, 50284273907, 187663465045, 700369586270, 2613814880038, 9754889933879, 36405744855481, 135868089488042
Offset: 0

Views

Author

Paul Barry, Nov 04 2008

Keywords

Comments

a(n+1) is the Hankel transform of A051960 aerated.

Crossrefs

Programs

  • GAP
    a:=[1,2,10];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 09 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x+x^2)/((1+x)*(1-4*x+x^2)) )); // G. C. Greubel, Jan 09 2020
    
  • Maple
    seq(coeff(series((1-x+x^2)/((1+x)*(1-4*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 09 2020
  • Mathematica
    LinearRecurrence[{3,3,-1}, {1,2,10}, 30] (* G. C. Greubel, Jan 09 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x+x^2)/((1+x)*(1-4*x+x^2))) \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    def A146983_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+x^2)/((1+x)*(1-4*x+x^2)) ).list()
    A146983_list(30) # G. C. Greubel, Jan 09 2020
    

Formula

From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n + 3*Sum_{k = 1..n} (-1)^(n-k)*6^(k-1)*binomial(n+k,2*k).
a(n) = (-1)^n*R(n,-3), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1/2) and T(n,x) denotes the Chebyshev polynomial of the first kind Cf. A182432.
Recurrence: a(n) = 4*a(n-1) -a(n-2) +3*(-1)^n, with a(0) = 1 and a(1) = 2; a(n)*a(n-2) = a(n-1)*(a(n-1)+3*(-1)^n).
Sum_{k>=0} (-1)^k/a(k) = 1/sqrt(3). (End)
From Colin Barker, Jul 29 2013: (Start)
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3).
G.f.: (1-x+x^2)/((1+x)*(1-4*x+x^2)). (End)

Extensions

More terms from Colin Barker, Jul 29 2013

A001353 a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0

Views

Author

Keywords

Comments

3*a(n)^2 + 1 is a square. Moreover, 3*a(n)^2 + 1 = (2*a(n) - a(n-1))^2.
Consecutive terms give nonnegative solutions to x^2 - 4*x*y + y^2 = 1. - Max Alekseyev, Dec 12 2012
Values y solving the Pellian x^2 - 3*y^2 = 1; corresponding x values given by A001075(n). Moreover, we have a(n) = 2*a(n-1) + A001075(n-1). - Lekraj Beedassy, Jul 13 2006
Number of spanning trees in 2 X n grid: by examining what happens at the right-hand end we see that a(n) = 3*a(n-1) + 2*a(n-2) + 2*a(n-3) + ... + 2*a(1) + 1, where the final 1 corresponds to the tree ==...=| !. Solving this we get a(n) = 4*a(n-1) - a(n-2).
Complexity of 2 X n grid.
A016064 also describes triangles whose sides are consecutive integers and in which an inscribed circle has an integer radius. A001353 is exactly and precisely mapped to the integer radii of such inscribed circles, i.e., for each term of A016064, the corresponding term of A001353 gives the radius of the inscribed circle. - Harvey P. Dale, Dec 28 2000
n such that 3*n^2 = floor(sqrt(3)*n*ceiling(sqrt(3)*n)). - Benoit Cloitre, May 10 2003
For n>0, ratios a(n+1)/a(n) may be obtained as convergents of the continued fraction expansion of 2+sqrt(3): either as successive convergents of [4;-4] or as odd convergents of [3;1, 2]. - Lekraj Beedassy, Sep 19 2003
Ways of packing a 3 X (2*n-1) rectangle with dominoes, after attaching an extra square to the end of one of the sides of length 3. With reference to A001835, therefore: a(n) = a(n-1) + A001835(n-1) and A001835(n) = 3*A001835(n-1) + 2*a(n-1). - Joshua Zucker and the Castilleja School Math Club, Oct 28 2003
a(n+1) is a Chebyshev transform of 4^n, where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
This sequence is prime-free, because a(2n) = a(n) * (a(n+1)-a(n-1)) and a(2n+1) = a(n+1)^2 - a(n)^2 = (a(n+1)+a(n)) * (a(n+1)-a(n)). - Jianing Song, Jul 06 2019
Numbers such that there is an m with t(n+m) = 3*t(m), where t(n) are the triangular numbers A000217. For instance, t(35) = 3*t(20) = 630, so 35 - 20 = 15 is in the sequence. - Floor van Lamoen, Oct 13 2005
a(n) = number of distinct matrix products in (A + B + C + D)^n where commutator [A,B] = 0 but neither A nor B commutes with C or D. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
For n > 1, middle side (or long leg) of primitive Pythagorean triangles having an angle nearing Pi/3 with larger values of sides. [Complete triple (X, Y, Z), X < Y < Z, is given by X = A120892(n), Y = a(n), Z = A120893(n), with recurrence relations X(i+1) = 2*{X(i) - (-1)^i} + a(i); Z(i+1) = 2*{Z(i) + a(i)} - (-1)^i.] - Lekraj Beedassy, Jul 13 2006
From Dennis P. Walsh, Oct 04 2006: (Start)
Number of 2 X n simple rectangular mazes. A simple rectangular m X n maze is a graph G with vertex set {0, 1, ..., m} X {0, 1, ..., n} that satisfies the following two properties: (i) G consists of two orthogonal trees; (ii) one tree has a path that sequentially connects (0,0),(0,1), ..., (0,n), (1,n), ...,(m-1,n) and the other tree has a path that sequentially connects (1,0), (2,0), ..., (m,0), (m,1), ..., (m,n). For example, a(2) = 4 because there are four 2 X 2 simple rectangular mazes:
| | | | | | | | |
| | | | | || | |
(End)
[1, 4, 15, 56, 209, ...] is the Hankel transform of [1, 1, 5, 26, 139, 758, ...](see A005573). - Philippe Deléham, Apr 14 2007
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
From Gary W. Adamson, Jun 21 2009: (Start)
A001353 and A001835 = bisection of continued fraction [1, 2, 1, 2, 1, 2, ...], i.e., of [1, 3, 4, 11, 15, 41, ...].
For n>0, a(n) equals the determinant of an (n-1) X (n-1) tridiagonal matrix with ones in the super and subdiagonals and (4, 4, 4, ...) as the main diagonal. [Corrected by Johannes Boot, Sep 04 2011]
A001835 and A001353 = right and next to right borders of triangle A125077. (End)
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 4's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
2a(n) is the number of n-color compositions of 2n consisting of only even parts; see Guo in references. - Brian Hopkins, Jul 19 2011
Pisano period lengths: 1, 2, 6, 4, 3, 6, 8, 4, 18, 6, 10, 12, 12, 8, 6, 8, 18, 18, 5, 12, ... - R. J. Mathar, Aug 10 2012
From Michel Lagneau, Jul 08 2014: (Start)
a(n) is defined also by the recurrence a(1)=1; for n>1, a(n+1) = 2*a(n) + sqrt(3*a(n)^2 + 1) where a(n) is an integer for every n. This sequence is generalizable by the sequence b(n,m) of parameter m with the initial condition b(1,m) = 1, and for n > 1 b(n+1,m) = m*b(n,m) + sqrt((m^2 - 1)*b(n,m)^2 + 1) for m = 2, 3, 4, ... where b(n,m) is an integer for every n.
The first corresponding sequences are
b(n,2) = a(n) = A001353(n);
b(n,3) = A001109(n);
b(n,4) = A001090(n);
b(n,5) = A004189(n);
b(n,6) = A004191(n);
b(n,7) = A007655(n);
b(n,8) = A077412(n);
b(n,9) = A049660(n);
b(n,10) = A075843(n);
b(n,11) = A077421(n);
....................
We obtain a general sequence of polynomials {b(n,x)} = {1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1, 32*x^5 - 32*x^3 + 6*x, ...} with x = m where each b(n,x) is a Gegenbauer polynomial defined by the recurrence b(n,x)- 2*x*b(n-1,x) + b(n-2,x) = 0, the same relation as the Chebyshev recurrence, but with the initial conditions b(x,0) = 1 and b(x,1) = 2*x instead b(x,0) = 1 and b(x,1) = x for the Chebyshev polynomials. (End)
If a(n) denotes the n-th term of the above sequence and we construct a triangle whose sides are a(n) - 1, a(n) + 1 and sqrt(3a(n)^2 + 1), then, for every n the measure of one of the angles of the triangle so constructed will always be 120 degrees. This result of ours was published in Mathematics Spectrum (2012/2013), Vol. 45, No. 3, pp. 126-128. - K. S. Bhanu and Dr. M. N. Deshpande, Professor (Retd), Department of Statistics, Institute of Science, Nagpur (India).
For n >= 1, a(n) equals the number of 01-avoiding words of length n - 1 on alphabet {0, 1, 2, 3}. - Milan Janjic, Jan 25 2015
For n > 0, 10*a(n) is the number of vertices and roots on level n of the {4, 5} mosaic (see L. Németh Table 1 p. 6). - Michel Marcus, Oct 30 2015
(2 + sqrt(3))^n = A001075(n) + a(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 12 2019
The Cholesky decomposition A = C C* for tridiagonal A with A[i,i] = 4 and A[i+1,i] = A[i,i+1] = -1, as it arises in the discretized 2D Laplace operator (Poisson equation...), has nonzero elements C[i,i] = sqrt(a(i+1)/a(i)) = -1/C[i+1,i], i = 1, 2, 3, ... - M. F. Hasler, Mar 12 2021
The triples (a(n-1), 2a(n), a(n+1)), n=2,3,..., are exactly the triples (a,b,c) of positive integers a < b < c in arithmetic progression such that a*b+1, b*c+1, and c*a+1 are perfect squares. - Bernd Mulansky, Jul 10 2021
From Greg Dresden and Linyun Sheng, Jul 01 2025: (Start)
a(n) is the number of ways to tile this strip of length n,
| | | | | | |\
||__||__||__|_\,
where the last cell is a right triangle, with three types of tiles: 1 X 1 squares, 1 X 1 small right triangles, and large right triangles (with large side length 2) formed by joining two of those small right triangles along a short leg. As an example, here is one of the a(7)=2911 ways to tile the 1 X 7 strip with these kinds of tiles:
|\ /|\ | /| | / \
|\/_|\|/|__|/_\,
(End)

Examples

			For example, when n = 3:
  ****
  .***
  .***
can be packed with dominoes in 4 different ways: 3 in which the top row is tiled with two horizontal dominoes and 1 in which the top row has two vertical and one horizontal domino, as shown below, so a(2) = 4.
  ---- ---- ---- ||--
  .||| .--| .|-- .|||
  .||| .--| .|-- .|||
G.f. = x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2911*x^7 + 10864*x^8 + ...
		

References

  • Bastida, Julio R., Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 163.
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A bisection of A002530.
Cf. A125077.
A row of A116469.
Chebyshev sequence U(n, m): A000027 (m=1), this sequence (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 16 2018
    
  • Haskell
    a001353 n = a001353_list !! n
    a001353_list =
       0 : 1 : zipWith (-) (map (4 *) $ tail a001353_list) a001353_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 06 2019
    
  • Maple
    A001353 := proc(n) option remember; if n <= 1 then n else 4*A001353(n-1)-A001353(n-2); fi; end;
    A001353:=z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation.
    seq( simplify(ChebyshevU(n-1, 2)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[2, 1]]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 13 2005 *)
    Table[GegenbauerC[n-1, 1, 2], {n, 0, 30}] (* Zerinvary Lajos, Jul 14 2009 *)
    Table[-((I Sin[n ArcCos[2]])/Sqrt[3]), {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *)
    Table[Sinh[n ArcCosh[2]]/Sqrt[3], {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *)
    Table[ChebyshevU[n-1, 2], {n, 0, 30}] (* Eric W. Weisstein, Jul 16 2011 *)
    a[0]:=0; a[1]:=1; a[n_]:= a[n]= 4a[n-1] - a[n-2]; Table[a[n], {n, 0, 30}] (* Alonso del Arte, Jul 19 2011 *)
    LinearRecurrence[{4, -1}, {0, 1}, 30] (* Sture Sjöstedt, Dec 06 2011 *)
    Round@Table[Fibonacci[2n, Sqrt[2]]/Sqrt[2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=0,30,print1(([1,0,0]*M^i)[2],",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
    
  • PARI
    {a(n) = real( (2 + quadgen(12))^n / quadgen(12) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    concat(0, Vec(x/(1-4*x+x^2) + O(x^30))) \\ Altug Alkan, Oct 30 2015
    
  • Python
    a001353 = [0, 1]
    for n in range(30): a001353.append(4*a001353[-1] - a001353[-2])
    print(a001353)  # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number1(n,4,1) for n in range(30)] # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    [chebyshev_U(n-1,2) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x/(1-4*x+x^2).
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = sqrt((A001075(n)^2 - 1)/3).
a(n) = 2*a(n-1) + sqrt(3*a(n-1)^2 + 1). - Lekraj Beedassy, Feb 18 2002
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 06 2002
Binomial transform of A002605.
E.g.f.: exp(2*x)*sinh(sqrt(3)*x)/sqrt(3).
a(n) = S(n-1, 4) = U(n-1, 2); S(-1, x) := 0, Chebyshev's polynomials of the second kind A049310.
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*4^(n - 2*k). - Paul Barry, Oct 25 2004
a(n) = Sum_{k=0..n-1} binomial(n+k,2*k+1)*2^k. - Paul Barry, Nov 30 2004
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3), n>=3. - Lekraj Beedassy, Jul 13 2006
a(n) = -A106707(n). - R. J. Mathar, Jul 07 2006
M^n * [1,0] = [A001075(n), A001353(n)], where M = the 2 X 2 matrix [2,3; 1,2]; e.g., a(4) = 56 since M^4 * [1,0] = [97, 56] = [A001075(4), A001353(4)]. - Gary W. Adamson, Dec 27 2006
From Michael Somos, Sep 19 2008: (Start)
Sequence satisfies 1 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v.
a(n) = -a(-n) for all integer n. (End)
Rational recurrence: a(n) = (17*a(n-1)*a(n-2) - 4*(a(n-1)^2 + a(n-2)^2))/a(n-3) for n > 3. - Jaume Oliver Lafont, Dec 05 2009
If p[i] = Fibonacci(2i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j + 1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
From Eric W. Weisstein, Jul 16 2011: (Start)
a(n) = C_{n-1}^{(1)}(2), where C_n^{(m)}(x) is the Gegenbauer polynomial.
a(n) = -i*sin(n*arccos(2))/sqrt(3).
a(n) = sinh(n*arccosh(2))/sqrt(3). (End)
a(n) = b such that Integral_{x=0..Pi/2} (sin(n*x))/(2-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
a(n) = sqrt(A098301(n)) = sqrt([A055793 / 3]), base 3 analog of A031150. - M. F. Hasler, Jan 16 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*3^k. - Philippe Deléham, Feb 10 2012
1, 4, 15, 56, 209, ... = INVERT(INVERT(1, 2, 3, 4, 5, ...)). - David Callan, Oct 13 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(3).
Product_{n >= 2} (1 - 1/a(n)) = 1/4*(1 + sqrt(3)). (End)
a(n+1) = (A001834(n) + A001835(n))/2. a(n+1) + a(n) = A001834(n). a(n+1) - a(n) = A001835(n). - Richard R. Forberg, Sep 04 2013
a(n) = -(-i)^(n+1)*Fibonacci(n, 4*i), i = sqrt(-1). - G. C. Greubel, Jun 06 2019
a(n)^2 - a(m)^2 = a(n+m) * a(n-m), a(n+2)*a(n-2) = 16*a(n+1)*a(n-1) - 15*a(n)^2, a(n+3)*a(n-2) = 15*a(n+2)*a(n-1) - 14*a(n+1)*a(n) for all integer n, m. - Michael Somos, Dec 12 2019
a(n) = 2^n*Sum_{k >= n} binomial(2*k,2*n-1)*(1/3)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n) = Sum_{k > 0} (-1)^((k-1)/2)*binomial(2*n, n+k)*(k|12), where (k|12) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
Sum_{k=0..n} a(k) = (a(n+1) - a(n) - 1)/2. - Prabha Sivaramannair, Sep 22 2023
a(2n+1) = A001835(n+1) * A001834(n). - M. Farrokhi D. G., Oct 15 2023
Sum_{n>=1} arctan(1/(4*a(n)^2)) = Pi/12 (A019679) (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
From Peter Bala, May 21 2025: (Start)
Product_{n >= 1} (1 + 1/a(n))^2 = 2*(2 + sqrt(3)) (telescoping product: (1 + 1/a(2*n-1))^2 * (1 + 1/a(2*n-2))^2 = (4 + 2*A251963(n)/A005246(2*n)^2)/(4 + 2*A251963(n-1)/A005246(2*n-2)^2) ).
Product_{n >= 2} (1 - 1/a(n))^2 = (1/8)*(2 + sqrt(3)).
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 3 (telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (3 - 2/A001835(n+1)^2)/(3 - 2/A001835(n)^2) ).
Product_{n >= 2} ((a(2*n-1) + 1)/(a(2*n-1) - 1))^2 = 4/3.
The o.g.f. A(x) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0. The o.g.f. for A007655 equals -A(sqrt(x))*A(-sqrt(x)). (End)

A001834 a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, 716035, 2672279, 9973081, 37220045, 138907099, 518408351, 1934726305, 7220496869, 26947261171, 100568547815, 375326930089, 1400739172541, 5227629760075, 19509779867759, 72811489710961, 271736178976085
Offset: 0

Views

Author

Keywords

Comments

Sequence also gives values of x satisfying 3*y^2 - x^2 = 2, the corresponding y being given by A001835(n+1). Moreover, quadruples(p, q, r, s) satisfying p^2 + q^2 + r^2 = s^2, where p = q and r is either p+1 or p-1, are termed nearly isosceles Pythagorean and are given by p = {x + (-1)^n}/3, r = p-(-1)^n, s = y for n > 1. - Lekraj Beedassy, Jul 19 2002
a(n)= A002531(1+2*n). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 14 2007
361 written in base A001835(n+1) - 1 is the square of a(n). E.g., a(12) = 2672279, A001835(13) - 1 = 1542840. We have 361_(1542840) = 3*1542840 + 6*1542840 + 1 = 2672279^2. - Richard Choulet, Oct 04 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators=A001834, denominators=A001835. - Clark Kimberling, Aug 27 2008
General recurrence is a(n) = (a(1) - 1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x + 1)^n, k = (a(1) - 3), x = (1 + sqrt((a(1) + 1)/(a(1) - 3)))/2. Examples in OEIS: a(1) = 4 gives A002878, primes in it A121534. a(1) = 5 gives A001834, primes in it A086386. a(1) = 6 gives A030221, primes in it A299109. a(1) = 7 gives A002315, primes in it A088165. a(1) = 8 gives A033890, primes in it not in OEIS (do there exist any?). a(1) = 9 gives A057080, primes in {71, 34649, 16908641, ...}. a(1) = 10 gives A057081, primes in it {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030192. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2*n) X (2*n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
x-values in the solution to 3x^2 + 6 = y^2 (see A082841 for the y-values). - Sture Sjöstedt, Nov 25 2011
Pisano period lengths: 1, 1, 2, 4, 3, 2, 8, 4, 6, 3, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
The aerated sequence (b(n))A100047%20for%20a%20connection%20with%20Chebyshev%20polynomials.%20-%20_Peter%20Bala">{n>=1} = [1, 0, 5, 0, 19, 0, 71, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - _Peter Bala, Mar 22 2015
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001835 and with any member of A001075. - René Gy, Feb 26 2018
From Wolfdieter Lang, Oct 15 2020: (Start)
((-1)^n)*a(n) = X(n) = (-1)^n*(S(n, 4) + S(n-1, 4)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 4*X*Y = +6, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form of discriminant 12, representing 6, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
Floretion Algebra Multiplication Program, FAMP Code: A001834 = (4/3)vesseq[ - .25'i + 1.25'j - .25'k - .25i' + 1.25j' - .25k' + 1.25'ii' + .25'jj' - .75'kk' + .75'ij' + .25'ik' + .75'ji' - .25'jk' + .25'ki' - .25'kj' + .25e], apart from initial term

Examples

			G.f. = 1 + 5*x + 19*x^2 + 71*x^3 + 265*x^4 + 989*x^5 + 3691*x^6 + ...
		

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

A bisection of sequence A002531.
Cf. A001352, A001835, A086386 (prime members).
Cf. A026150.
a(n)^2+1 = A094347(n+1).

Programs

  • Haskell
    a001834 n = a001834_list !! (n-1)
    a001834_list = 1 : 5 : zipWith (-) (map (* 4) $ tail a001834_list) a001834_list
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    f:=n->((1+sqrt(3))^(2*n+1)+(1-sqrt(3))^(2*n+1))/2^(n+1); # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    a[0] = 1; a[1] = 5; a[n_] := a[n] = 4a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 25}] (* Robert G. Wilson v, Apr 24 2004 *)
    Table[Expand[((1+Sqrt[3])^(2*n+1)+(1+Sqrt[3])^(2*n+1))/2^(n+1)],{n, 0, 20}] (* Anton Vrba, Feb 14 2007 *)
    LinearRecurrence[{4, -1}, {1, 5}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A002531 *)
    a[3, 20] (* Gerry Martens, Jun 07 2015 *)
    Round@Table[LucasL[2n+1, Sqrt[2]]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 + quadgen(12)) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( polchebyshev(n-1, 2) + polchebyshev(n, 2), x, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • SageMath
    [(lucas_number2(n,4,1)-lucas_number2(n-1,4,1))/2 for n in range(1, 27)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - N. J. A. Sloane, Nov 10 2009
a(n) = (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n). - Dean Hickerson, Dec 01 2002
From Mario Catalani, Apr 11 2003: (Start)
With a = 2 + sqrt(3), b = 2 - sqrt(3): a(n) = (1/sqrt(2))(a^(n + 1/2) - b^(n + 1/2)).
a(n) - a(n-1) = A003500(n).
a(n) = sqrt(1 + 12*A061278(n) + 12*A061278(n)^2). (End)
a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - Anton Vrba, Feb 14 2007
G.f.: (1 + x)/((1 - 4*x + x^2)). Simon Plouffe in his 1992 dissertation.
a(n) = S(2*n, sqrt(6)) = S(n, 4) + S(n-1, 4); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 4) = A001353(n).
For all members x of the sequence, 3*x^2 + 6 is a square. Limit_{n->infinity} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A001571(n) + 1. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n - i)*binomial(2*n - i, i); then (-1)^n*q(n, -6) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n + 1, 2*k)*3^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = floor(sqrt(3)*A001835(n+1)). - Philippe Deléham, Mar 03 2004
a(n+1) - 2*a(n) = 3*A001835(n+1). Using the known relation A001835(n+1) = sqrt((a(n)^2 + 2)/3) it follows that a(n+1) - 2*a(n) = sqrt(3*(a(n)^2 + 2)). Therefore a(n+1)^2 + a(n)^2 - 4*a(n+1)*a(n) - 6 = 0. - Creighton Dement, Apr 18 2005
a(n) = L(n,-4)*(-1)^n, where L is defined as in A108299; see also A001835 for L(n,+4). - Reinhard Zumkeller, Jun 01 2005
a(n) = Jacobi_P(n, 1/2, -1/2, 2)/Jacobi_P(n, -1/2, 1/2, 1). - Paul Barry, Feb 03 2006
Equals binomial transform of A026150 starting (1, 4, 10, 28, 76, ...) and double binomial transform of (1, 3, 3, 9, 9, 27, 27, 81, 81, ...). - Gary W. Adamson, Nov 30 2007
Sequence satisfies 6 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(-1-n) = -a(n). - Michael Somos, Sep 19 2008
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(5*A125905(n) + A125905(n+1)).
E.g.f.: exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). (End)
a(n) = A061278(n+1) - A061278(n-1) for n>=2. - John P. McSorley, Jun 20 2020
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 2), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n) - 2*a(n-1) = 3 * A001835(n) for n >= 1.
For arbitrary x, a(n+x)^2 - 4*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 6 with a(n) := (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n) as above. The particular case x = 0 is noted above,
a(n+1/2) = sqrt(6) * A001353(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6*sqrt(6) + 12) * A001353(n+1).
a(n+3/4) - a(n+1/4) = sqrt(2*sqrt(6) - 4) * A001075(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001352(n) + 1/A001352(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3*(1 - 2/A102206(k))). (End)

A002530 a(n) = 4*a(n-2) - a(n-4) for n > 1, a(n) = n for n = 0, 1.

Original entry on oeis.org

0, 1, 1, 3, 4, 11, 15, 41, 56, 153, 209, 571, 780, 2131, 2911, 7953, 10864, 29681, 40545, 110771, 151316, 413403, 564719, 1542841, 2107560, 5757961, 7865521, 21489003, 29354524, 80198051, 109552575, 299303201, 408855776, 1117014753, 1525870529, 4168755811
Offset: 0

Views

Author

Keywords

Comments

Denominators of continued fraction convergents to sqrt(3), for n >= 1.
Also denominators of continued fraction convergents to sqrt(3) - 1. See A048788 for numerators. - N. J. A. Sloane, Dec 17 2007. Convergents are 1, 2/3, 3/4, 8/11, 11/15, 30/41, 41/56, 112/153, ...
Consider the mapping f(a/b) = (a + 3*b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 5/3, 7/4, 19/11, ... converging to 3^(1/2). Sequence contains the denominators. The same mapping for N, i.e., f(a/b) = (a + Nb)/(a + b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Sqrt(3) = 2/2 + 2/3 + 2/(3*11) + 2/(11*41) + 2/(41*153) + 2/(153*571), ...; the sum of the first 6 terms of this series = 1.7320490367..., while sqrt(3) = 1.7320508075... - Gary W. Adamson, Dec 15 2007
From Clark Kimberling, Aug 27 2008: (Start)
Related convergents (numerator/denominator):
lower principal convergents: A001834/A001835
upper principal convergents: A001075/A001353
intermediate convergents: A005320/A001075
principal and intermediate convergents: A143642/A140827
lower principal and intermediate convergents: A143643/A005246. (End)
Row sums of triangle A152063 = (1, 3, 4, 11, ...). - Gary W. Adamson, Nov 26 2008
From Alois P. Heinz, Apr 13 2011: (Start)
Also number of domino tilings of the 3 X (n-1) rectangle with upper left corner removed iff n is even. For n=4 the 4 domino tilings of the 3 X 3 rectangle with upper left corner removed are:
. ._. . ._. . ._. . ._.
.|__| .|__| .| | | .|___|
| |_| | | | | | ||| |_| |
||__| |||_| ||__| |_|_| (End)
This is the sequence of Lehmer numbers u_n(sqrt(R),Q) with the parameters R = 2 and Q = -1. It is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, Apr 18 2014
2^(-floor(n/2))*(1 + sqrt(3))^n = A002531(n) + a(n)*sqrt(3); integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 11 2018
Let T(n) = 2^(n mod 2), U(n) = a(n), V(n) = A002531(n), x(n) = V(n)/U(n). Then T(n*m) * U(n+m) = U(n)*V(m) + U(m)*V(n), T(n*m) * V(n+m) = 3*U(n)*U(m) + V(m)*V(n), x(n+m) = (3 + x(n)*x(m))/(x(n) + x(m)). - Michael Somos, Nov 29 2022

Examples

			Convergents to sqrt(3) are: 1, 2, 5/3, 7/4, 19/11, 26/15, 71/41, 97/56, 265/153, 362/209, 989/571, 1351/780, 3691/2131, ... = A002531/A002530 for n >= 1.
1 + 1/(1 + 1/(2 + 1/(1 + 1/2))) = 19/11 so a(5) = 11.
G.f. = x + x^2 + 3*x^3 + 4*x^4 + 11*x^5 + 15*x^6 + 41*x^7 + ... - _Michael Somos_, Mar 18 2022
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Russell Lyons, A bird's-eye view of uniform spanning trees and forests, in Microsurveys in Discrete Probability, AMS, 1998.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 181.
  • Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

Cf. A002531 (numerators of convergents to sqrt(3)), A048788, A003297.
Bisections: A001353 and A001835.
Cf. A152063.
Analog for sqrt(m): A000129 (m=2), A001076 (m=5), A041007 (m=6), A041009 (m=7), A041011 (m=8), A005668 (m=10), A041015 (m=11), A041017 (m=12), ..., A042935 (m=999), A042937 (m=1000).

Programs

  • Magma
    I:=[0,1,1,3]; [n le 4 select I[n] else 4*Self(n-2) - Self(n-4): n in [1..50]]; // G. C. Greubel, Feb 25 2019
    
  • Maple
    a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif n=3 then 3 else 4*a(n-2)-a(n-4) fi end; [ seq(a(i),i=0..50) ];
    A002530:=-(-1-z+z**2)/(1-4*z**2+z**4); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{0},Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[3],n]]], {n,1,50}]] (* Stefan Steinerberger, Apr 01 2006 *)
    Join[{0},Denominator[Convergents[Sqrt[3],50]]] (* or *) LinearRecurrence[ {0,4,0,-1},{0,1,1,3},50] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[n<0, -(-1)^n, 1] SeriesCoefficient[ x*(1+x-x^2)/(1-4*x^2+x^4), {x, 0, Abs@n}]; (* Michael Somos, Apr 18 2019 *)
    a[ n_] := ChebyshevU[n-1, Sqrt[-1/2]]*Sqrt[2]^(Mod[n, 2]-1)/I^(n-1) //Simplify; (* Michael Somos, Nov 29 2022 *)
  • PARI
    {a(n) = if( n<0, -(-1)^n * a(-n), contfracpnqn(vector(n, i, 1 + (i>1) * (i%2)))[2, 1])}; /* Michael Somos, Jun 05 2003 */
    
  • PARI
    { for (n=0, 50, a=contfracpnqn(vector(n, i, 1+(i>1)*(i%2)))[2, 1]; write("b002530.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 01 2009
    
  • PARI
    my(w=quadgen(12)); A002530(n)=real((2+w)^(n\/2)*if(bittest(n,0),1-w/3,w/3));
    apply(A002530, [0..30]) \\ M. F. Hasler, Nov 04 2019
    
  • Python
    from functools import cache
    @cache
    def a(n): return [0, 1, 1, 3][n] if n < 4 else 4*a(n-2) - a(n-4)
    print([a(n) for n in range(36)]) # Michael S. Branicky, Nov 13 2022
  • Sage
    (x*(1+x-x^2)/(1-4*x^2+x^4)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

G.f.: x*(1 + x - x^2)/(1 - 4*x^2 + x^4).
a(n) = 4*a(n-2) - a(n-4). [Corrected by László Szalay, Feb 21 2014]
a(n) = -(-1)^n * a(-n) for all n in Z, would satisfy the same recurrence relation. - Michael Somos, Jun 05 2003
a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1).
From Benoit Cloitre, Dec 15 2002: (Start)
a(2*n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(2*sqrt(3)).
a(2*n) = A001353(n).
a(2*n-1) = ceiling((1 + 1/sqrt(3))/2*(2 + sqrt(3))^n) = ((3 + sqrt(3))^(2*n - 1) + (3 - sqrt(3))^(2*n - 1))/6^n.
a(2*n-1) = A001835(n). (End)
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n - k, k) * 2^floor((n - 2*k)/2). - Paul Barry, Jul 13 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2) + k, floor((n - 1)/2 - k))*2^k. - Paul Barry, Jun 22 2005
G.f.: (sqrt(6) + sqrt(3))/12*Q(0), where Q(k) = 1 - a/(1 + 1/(b^(2*k) - 1 - b^(2*k)/(c + 2*a*x/(2*x - g*m^(2*k)/(1 + a/(1 - 1/(b^(2*k + 1) + 1 - b^(2*k + 1)/(h - 2*a*x/(2*x + g*m^(2*k + 1)/Q(k + 1)))))))))). - Sergei N. Gladkovskii, Jun 21 2012
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = 1/2*(sqrt(2) + sqrt(6)) and beta = (1/2)*(sqrt(2) - sqrt(6)). Cf. A108412. - Peter Bala, Apr 18 2014
a(n) = (-sqrt(2)*i)^n*S(n, sqrt(2)*i)*2^(-floor(n/2)) = A002605(n)*2^(-floor(n/2)), n >= 0, with i = sqrt(-1) and S the Chebyshev polynomials (A049310). - Wolfdieter Lang, Feb 10 2018
a(n+1)*a(n+2) - a(n+3)*a(n) = (-1)^n, n >= 0. - Kai Wang, Feb 06 2020
E.g.f.: sinh(sqrt(3/2)*x)*(sinh(x/sqrt(2)) + sqrt(2)*cosh(x/sqrt(2)))/sqrt(3). - Stefano Spezia, Feb 07 2020
a(n) = ((1 + sqrt(3))^n - (1 - sqrt(3))^n)/(2*2^floor(n/2))/sqrt(3) = A002605(n)/2^floor(n/2). - Robert FERREOL, Apr 13 2023

Extensions

Definition edited by M. F. Hasler, Nov 04 2019

A080040 a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0)=2, a(1)=2.

Original entry on oeis.org

2, 2, 8, 20, 56, 152, 416, 1136, 3104, 8480, 23168, 63296, 172928, 472448, 1290752, 3526400, 9634304, 26321408, 71911424, 196465664, 536754176, 1466439680, 4006387712, 10945654784, 29904084992, 81699479552, 223207129088, 609813217280, 1666040692736, 4551707820032
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003

Keywords

Comments

The Lucas sequence V_n(2,-2). - Jud McCranie, Mar 02 2012
The signed version 2, -2, 8, -20, 56, -152, 416, -1136, 3104, -8480, 23168, ... is the Lucas sequence V(-2,-2). - R. J. Mathar, Jan 08 2013
After a(2) equals round((1+sqrt(3))^n) = 1, 3, 7, 20, 56, 152, ... - Jeremy Gardiner, Aug 11 2013
Also the number of independent vertex sets and vertex covers in the n-sunlet graph. - Eric W. Weisstein, Sep 27 2017

Crossrefs

Programs

  • Haskell
    a080040 n = a080040_list !! n
    a080040_list =
       2 : 2 : map (* 2) (zipWith (+) a080040_list (tail a080040_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Magma
    a:=[2,2]; [n le 2 select a[n] else 2*Self(n-1) + 2*Self(n-2):n in [1..27]]; Marius A. Burtea, Jan 20 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 27); Coefficients(R!( (2-2*x)/(1-2*x-2*x^2))); // Marius A. Burtea, Jan 20 2020
  • Mathematica
    CoefficientList[Series[(2 - 2 t)/(1 - 2 t - 2 t^2), {t, 0, 30}], t]
    With[{c = {2, 2}}, LinearRecurrence[c, c, 20]] (* Harvey P. Dale, Apr 24 2016 *)
    Round @ Table[LucasL[n, Sqrt[2]] 2^(n/2), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[(1 - Sqrt[3])^n + (1 + Sqrt[3])^n, {n, 0, 20}] // Expand (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n)=([0,1; 2,2]^n*[2;2])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(2,2,2,2, lambda n: 0); [next(it) for i in range(27)] # Zerinvary Lajos, Jul 16 2008
    
  • Sage
    [lucas_number2(n,2,-2) for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (2-2*x)/(1-2*x-2*x^2).
a(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.
a(n) = 2*A026150(n). - Philippe Deléham, Nov 19 2008
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(3*k-1)/(x*(3*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
a(n) = 2*2^floor(n/2)*A002531(n). - Ralf Stephan, Sep 08 2013
a(n) = [x^n] ( 1 + x + sqrt(1 + 2*x + 3*x^2) )^n for n >= 1. - Peter Bala, Jun 29 2015
E.g.f.: 2*exp(x)*cosh(sqrt(3)*x). - Stefano Spezia, Mar 02 2024

A002812 a(n) = 2*a(n-1)^2 - 1, starting a(0) = 2.

Original entry on oeis.org

2, 7, 97, 18817, 708158977, 1002978273411373057, 2011930833870518011412817828051050497, 8095731360557835890888779535060256832479295062749579257164654370487894017
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
2^p-1 is prime iff it divides a(p-2), since a(n) = A003010(n)/2, where A003010 is the Lucas-Lehmer sequence used for Mersenne number primality testing. - M. F. Hasler, Mar 09 2007
From Cino Hilliard, Sep 28 2008: (Start)
Also numerators of the convergents to the square root of 3 using the following recursion for initial x = 1: x1=x, x=3/x, x=(x+x1)/2.
This recursion was derived by experimenting with polynomial recursions of the form x = -a(0)/(a(n-1)x^(n-1) + ... + a(1)) in an effort to find a root for the polynomial a(n)x^n + a(n-1)x^(n-1) + ... + a(0). The process was hit-and-miss until I introduced the averaging step described above. This method is equivalent to Newton's Method although derived somewhat differently. (End)
The sequence satisfies the Pell equation a(n)^2 - 3*A071579(n)^2 = 1. - Vincenzo Librandi, Dec 19 2011
From Peter Bala, Nov 2012: (Start)
The present sequence corresponds to the case x = 2 of the following general remarks. Let x > 1 and let alpha := {x + sqrt(x^2 - 1)}. Define a sequence a(n) (which depends on x) by setting a(n) = (1/2)*(alpha^(2^n) + (1/alpha)^(2^n)) for n >= 0. It is easy to verify that a(n) is a solution to the recurrence equation a(n+1) = 2*a(n)^2 - 1 with the initial condition a(0) = x.
The following algebraic identity is valid for x > 1:
sqrt(4*x^2 - 4)/(2*x + 1) = (1 - 1/(2*x))*sqrt(4*y^2 - 4)/(2*y + 1), where y = 2*x^2 - 1. Iterating the identity yields the product expansion sqrt(4*x^2 - 4)/(2*x + 1) = Product_{n >= 0} (1 - 1/(2*a(n))). A second expansion is Product_{n >= 0} (1 + 1/a(n)) = sqrt((x + 1)/(x - 1)). See Mendes-France and van der Poorten. (End)

Examples

			G.f. = 2 + 7*x + 97*x^2 + 18817*x^3 + 708158977*x^4 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
  • E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
  • W. Sierpiński, Sur les développements systématiques des nombres en produits infinis, in Œuvres choisies, tome 1, PWN Editions scientifiques de Pologne, 1974.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[2];; for n in [2..10] do a[n]:=2*a[n-1]^2-1; od; a; # Muniru A Asiru, Aug 12 2018
  • Magma
    I:=[2]; [n le 1 select I[n] else 2*Self(n-1)^2-1: n in [1..8]]; // Vincenzo Librandi, Dec 19 2011
    
  • Maple
    a:=n->((2+sqrt(3))^(2^n)+(2-sqrt(3))^(2^n))/2: seq(floor(a(n)),n=0..10); # Muniru A Asiru, Aug 12 2018
  • Mathematica
    Table[((2 + Sqrt[3])^2^n + (2 - Sqrt[3])^2^n)/2, {n, 0, 7}] (* Bruno Berselli, Dec 20 2011 *)
    NestList[2#^2-1&,2,10] (* Harvey P. Dale, May 04 2013 *)
    a[ n_] := If[ n < 0, 0, ChebyshevT[2^n, 2]]; (* Michael Somos, Dec 06 2016 *)
  • PARI
    {a(n) = if( n<1, 2 * (n==0), 2 * a(n-1)^2 - 1)}; /* Michael Somos, Mar 14 2004 */
    
  • PARI
    /* Roots by recursion. Find first root of ax^2 + b^x + c */
    rroot2(a,b,c,p) = { local(x=1,x1=1,j); for(j=1,p, x1=x; x=-c/(a*x+b); x=(x1+x)/2; /* Let x be the average of the last 2 values */ print1(numerator(x)","); ); } \\ Cino Hilliard, Sep 28 2008
    

Formula

a(n) = A001075(2^n).
a(n) = ((2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n))/2. - Bruno Berselli, Dec 20 2011
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n >= 0} (1 - 1/(2*a(n))).
sqrt(3) = Product_{n >= 0} (1 + 1/a(n)).
a(n) = (1/2)*A003010(n). (End)
a(n) = cos(2^n*arccos(2)). - Peter Luschny, Oct 12 2022
a(n) = A002531(2^(n+1)). - Robert FERREOL, Apr 13 2023

A041006 Numerators of continued fraction convergents to sqrt(6).

Original entry on oeis.org

2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, 470449, 2093258, 4656965, 20721118, 46099201, 205117922, 456335045, 2030458102, 4517251249, 20099463098, 44716177445, 198964172878, 442644523201, 1969542265682, 4381729054565, 19496458483942
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 2 sequences, 2*A054320 and A001079. - Gerry Martens, Jun 10 2015

Crossrefs

Cf. A041007 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Magma
    I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
    
  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
  • PARI
    A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! M. F. Hasler, Nov 01 2019
    
  • PARI
    \\ For correct index & more terms:
    A041006(n)={n<#A041006|| A041006=extend(A041006, [2, 10; 4, -1], n\.8); A041006[n+1]}
    extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ M. F. Hasler, Nov 01 2019

Formula

From M. F. Hasler, Feb 13 2009: (Start)
a(2n) = 2*A142238(2n) = A041038(2n)/2;
a(2n-1) = A142238(2n-1) = A041038(2n-1) = A001079(n). (End)
G.f.: (2 + 5*x + 2*x^2 - x^3)/(1 - 10*x^2 + x^4).
a(n) = ((2 + sqrt(6))^(n+1) + (2 - sqrt(6))^(n+1))/2^(ceiling(n/2) + 1). - Robert FERREOL, Oct 13 2024
E.g.f.: sqrt(2)*sinh(sqrt(2)*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(sqrt(2)*x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Oct 14 2024

Extensions

More terms from Vincenzo Librandi, Jun 10 2015

A048788 a(2n+1) = a(2n) + a(2n-1), a(2n) = 2*a(2n-1) + a(2n-2); a(n) = n for n = 0, 1.

Original entry on oeis.org

0, 1, 2, 3, 8, 11, 30, 41, 112, 153, 418, 571, 1560, 2131, 5822, 7953, 21728, 29681, 81090, 110771, 302632, 413403, 1129438, 1542841, 4215120, 5757961, 15731042, 21489003, 58709048, 80198051, 219105150, 299303201, 817711552, 1117014753
Offset: 0

Views

Author

Robin Trew (trew(AT)hcs.harvard.edu), Dec 11 1999

Keywords

Comments

Numerators of continued fraction convergents to sqrt(3) - 1 (A160390). See A002530 for denominators. - N. J. A. Sloane, Dec 17 2007
Convergents are 1, 2/3, 3/4, 8/11, 11/15, 30/41, 41/56, 112/153, ... - Clark Kimberling, Sep 21 2013
A strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. - Peter Bala, Jun 06 2014
From Sarah-Marie Belcastro, Feb 15 2022: (Start)
a(n) is also the number of perfect matchings of an edge-labeled 2 X (n-1) Mobius band grid graph, or equivalently the number of domino tilings of a 2 X (n-1) Mobius band grid. (The twist is on the length-n side.)
a(n) is also the output of Lu and Wu's formula for the number of perfect matchings of an m X n Mobius band grid, specialized to m = 2 with the twist on the length-n side.
2*a(n) is the number of perfect matchings of an edge-labeled 2 X (n-1) projective planar grid graph, or equivalently the number of domino tilings of a 2 X (n-1) projective planar grid. (End)

References

  • Russell Lyons, A bird's-eye view of uniform spanning trees and forests, in Microsurveys in Discrete Probability, AMS, 1998.

Crossrefs

Bisections are A001835 and A052530.

Programs

  • GAP
    a:=[0,1,2,3];; for n in [5..40] do a[n]:=4a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[0,1,2,3]; [n le 4 select I[n] else 4*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    seq( simplify( `if`(`mod`(n,2)=0, 2*ChebyshevU((n-2)/2, 2), ChebyshevU((n-1)/2, 2) - ChebyshevU((n-3)/2, 2)) ), n=0..40); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Numerator[NestList[(2/(2 + #))&, 0, 40]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    CoefficientList[Series[x(1+2x-x^2)/(1-4x^2+x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    a0[n_]:= ((3+Sqrt[3])*(2-Sqrt[3])^n-((-3+Sqrt[3])*(2+Sqrt[3])^n))/6 // Simplify
    a1[n_]:= 2*Sum[a0[i], {i, 1, n}]
    Flatten[MapIndexed[{a1[#-1],a0[#]}&,Range[20]]] (* Gerry Martens, Jul 10 2015 *)
    Round@Table[With[{r=1+Sqrt[2], s=1+Sqrt[3]}, ((r + (-1)^n/r) s^n/2^(n/2) - (1/r + (-1)^n r) 2^(n/2)/s^n) Sqrt[6]/12], {n, 0, 20}] (* or *) LinearRecurrence[ {0,4,0,-1}, {0,1,2,3}, 40] (* Vladimir Reshetnikov, May 11 2016 *)
    Table[If[EvenQ[n], 2*ChebyshevU[(n-2)/2, 2], ChebyshevU[(n-1)/2, 2] - ChebyshevU[(n-3)/2, 2]], {n, 0, 40}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    main(size)=v=vector(size); v[1]=0;v[2]=1;v[3]=2;v[4]=3;for(i=5, size, v[i]=4*v[i-2] - v[i-4]); v; \\ Anders Hellström, Jul 11 2015
    
  • PARI
    a=vector(50); a[1]=1; a[2]=2; for(n=3, #a, if(n%2==1, a[n]=a[n-1]+a[n-2], a[n]=2*a[n-1]+a[n-2])); concat(0, a) \\ Colin Barker, Jan 30 2016
    
  • PARI
    a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,4,0]^n*[0;1;2;3])[1,1] \\ Charles R Greathouse IV, Mar 16 2017
    
  • PARI
    apply( {A048788(n)=imag((2+quadgen(12))^(n\/2)*if(bittest(n, 0), quadgen(12)-1, 2))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
    
  • PARI
    {a(n) = my(s=1,m=n); if(n<0,s=-(-1)^n; m=-n); polcoeff(x*(1+2*x-x^2)/(1-4*x^2+x^4) + x*O(x^m), m)*s}; /* Michael Somos, Sep 17 2020 */
    
  • Sage
    @CachedFunction
    def a(n):
        if (mod(n,2)==0): return 2*chebyshev_U((n-2)/2, 2)
        else: return chebyshev_U((n-1)/2, 2) - chebyshev_U((n-3)/2, 2)
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x*(1+2*x-x^2)/(1-4*x^2+x^4). - Paul Barry, Sep 18 2009
a(n) = 4*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013
a(2*n-1) = A001835(n); a(2*n) = 2*A001353(n). - Peter Bala, Jun 06 2014
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a1(n-1),a0(n)] for n>0:
a0(n) = ((3+sqrt(3))*(2-sqrt(3))^n-((-3+sqrt(3))*(2+sqrt(3))^n))/6.
a1(n) = 2*Sum_{i=1..n} a0(i). (End)
a(n) = ((r + (-1)^n/r)*s^n/2^(n/2) - (1/r + (-1)^n*r)*2^(n/2)/s^n)*sqrt(6)/12, where r = 1 + sqrt(2), s = 1 + sqrt(3). - Vladimir Reshetnikov, May 11 2016
a(n) = 2*ChebyshevU(n-1, 2) if n is even and ChebyshevU(n, 2) - ChebyshevU(n-1, 2) if n in odd. - G. C. Greubel, Dec 23 2019
a(n) = -(-1)^n*a(-n) for all n in Z. - Michael Somos, Sep 17 2020

Extensions

Denominator of g.f. corrected by Paul Barry, Sep 18 2009
Incorrect g.f. deleted by Colin Barker, Aug 10 2012

A041008 Numerators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
    A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
    extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)

Formula

G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).

A041014 Numerators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

3, 10, 63, 199, 1257, 3970, 25077, 79201, 500283, 1580050, 9980583, 31521799, 199111377, 628855930, 3972246957, 12545596801, 79245827763, 250283080090, 1580944308303, 4993116004999, 31539640338297
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010468, A041015 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041016 (m=12), ..., A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[11], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
  • PARI
    A041014=contfracpnqn(c=contfrac(sqrt(11)), #c)[1,][^-1] \\ Discard last element which may be incorrect. Use e.g. \p999 to get more terms, or extend as follows:
    {A041014_upto(N,A=Vec(A041014,N))=for(n=#A041014+1,N, A[n]=20*A[n-2]-A[n-4]); A041014=A} \\ M. F. Hasler, Nov 01 2019

Formula

G.f.: (3 + 10*x + 3*x^2 - x^3)/(1 - 20*x^2 + x^4).
Showing 1-10 of 32 results. Next