cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A041006 Numerators of continued fraction convergents to sqrt(6).

Original entry on oeis.org

2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, 470449, 2093258, 4656965, 20721118, 46099201, 205117922, 456335045, 2030458102, 4517251249, 20099463098, 44716177445, 198964172878, 442644523201, 1969542265682, 4381729054565, 19496458483942
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 2 sequences, 2*A054320 and A001079. - Gerry Martens, Jun 10 2015

Crossrefs

Cf. A041007 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Magma
    I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
    
  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
  • PARI
    A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! M. F. Hasler, Nov 01 2019
    
  • PARI
    \\ For correct index & more terms:
    A041006(n)={n<#A041006|| A041006=extend(A041006, [2, 10; 4, -1], n\.8); A041006[n+1]}
    extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ M. F. Hasler, Nov 01 2019

Formula

From M. F. Hasler, Feb 13 2009: (Start)
a(2n) = 2*A142238(2n) = A041038(2n)/2;
a(2n-1) = A142238(2n-1) = A041038(2n-1) = A001079(n). (End)
G.f.: (2 + 5*x + 2*x^2 - x^3)/(1 - 10*x^2 + x^4).
a(n) = ((2 + sqrt(6))^(n+1) + (2 - sqrt(6))^(n+1))/2^(ceiling(n/2) + 1). - Robert FERREOL, Oct 13 2024
E.g.f.: sqrt(2)*sinh(sqrt(2)*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(sqrt(2)*x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Oct 14 2024

Extensions

More terms from Vincenzo Librandi, Jun 10 2015

A041008 Numerators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
    A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
    extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)

Formula

G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).

A042936 Numerators of continued fraction convergents to sqrt(1000).

Original entry on oeis.org

31, 32, 63, 95, 158, 253, 1676, 3605, 8886, 136895, 282676, 702247, 4496158, 5198405, 9694563, 14892968, 24587531, 39480499, 2472378469, 2511858968, 4984237437, 7496096405, 12480333842, 19976430247, 132338915324, 284654260895, 701647437114, 10809365817605, 22320379072324
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A042937 (denominators).
Analog for sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042934 (m=999).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[1000], 30]] (* Harvey P. Dale, Oct 29 2013 *)
  • PARI
    A42936=contfracpnqn(c=contfrac(sqrt(1000)), #c)[1,][^-1] \\ Discards possibly incorrect last term. NB: a(n)=A42936[n+1]. Could be extended using: {A42936=concat(A42936, 78960998*A42936[-18..-1]-A42936[-36..-19])}
    \\ But terms with arbitrarily large indices can be computed using:
    A042936(n)={[A42936[n%18+i]|i<-[1, 19]]*([0, -1; 1, 78960998]^(n\18))[,1]} \\ Faster but longer with n=divrem(n,18). (End)

A041010 Numerators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A040005 (continued fraction), A041011 (denominators), A010466 (decimals).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
    CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
    a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
  • PARI
    A041010=contfracpnqn(c=contfrac(sqrt(8)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
    A041010(n)={n<#A041010|| A041010=extend(A041010, [-1,0,6,0]~, n\.8); A041010[n+1]}
    extend(A,c,N)={for(n=#A+1,#A=Vec(A,N), A[n]=A[n-#c..n-1]*c);A} \\ (End)

Formula

a(n) = 6*a(n-2) - a(n-4).
a(2n) = a(2n-1) + a(2n-2), a(2n+1) = 4*a(2n) + a(2n-1).
a(2n) = A001333(2n), a(2n+1) = 2*A001333(2n+1).
G.f.: (2+3*x+2*x^2-x^3)/(1-6*x^2+x^4).
a(n) = A001333(n+1)*A000034(n+1). - R. J. Mathar, Jul 08 2009
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = -((3-2*sqrt(2))^n*(1+sqrt(2))) + (-1+sqrt(2))*(3+2*sqrt(2))^n.
a1(n) = ((3-2*sqrt(2))^n + (3+2*sqrt(2))^n)/2. (End)

Extensions

Entry improved by Michael Somos
Initial term 1 removed and b-file, program and formulas adapted by Georg Fischer, Jul 01 2019
Cross-references added by M. F. Hasler, Nov 02 2019

A041015 Denominators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

1, 3, 19, 60, 379, 1197, 7561, 23880, 150841, 476403, 3009259, 9504180, 60034339, 189607197, 1197677521, 3782639760, 23893516081, 75463188003, 476672644099, 1505481120300, 9509559365899, 30034159217997
Offset: 0

Views

Author

Keywords

Comments

Sqrt(11) = 3 + continued fraction [3, 6, 3, 6, 3, 6, ...] = 6/2 + 6/19 + 6/(19*379) + 6/(379*7561) + ... - Gary W. Adamson, Dec 21 2007
Let X = the 2 X 2 matrix [1, 6; 3, 19], then X^n * [1, 0] = [a(n+1), a(n+2)]; e.g., X^3 * [1, 0] = [379, 1197] = [a(4), a(5)]. - Gary W. Adamson, Dec 21 2007

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    a0[n_] := (11+3*Sqrt[11]+(11-3*Sqrt[11])*(10+3*Sqrt[11])^(2*n))/(22*(10+3*Sqrt[11])^n) // Simplify
    a1[n_] := 3*Sum[a0[i], {i, 1, n}]
    Flatten[MapIndexed[{a0[#], a1[#]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: (1+3*x-x^2)/(1-20*x^2+x^4). - Colin Barker, Dec 31 2011
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((11+3*sqrt(11))/(10+3*sqrt(11))^n + (11-3*sqrt(11))*(10+3*sqrt(11))^n)/22.
a1(n) = 3*Sum_{i=1..n} a0(i). (End)

A042934 Numerators of continued fraction convergents to sqrt(999).

Original entry on oeis.org

31, 32, 63, 95, 158, 885, 5468, 6353, 37233, 80819, 441328, 522147, 3574210, 18393197, 21967407, 40360604, 62328011, 102688615, 6429022141, 6531710756, 12960732897, 19492443653, 32453176550
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A042935 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[999], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
  • PARI
    A42934=contfracpnqn(c=contfrac(sqrt(999)), #c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n) = A42934[n+1]! For more terms, use:
    A042934(n)={n<#A42934 || A42934_upto(n+10); A42934[n+1]}
    {A42934_upto(N,A=Vec(A42934,N))=for(n=#A42934+1,N, A[n]=205377230*A[n-18]-A[n-36]); A42934=A} \\ M. F. Hasler, Nov 01 2019

Formula

a(n) = 205377230*a(n-18) - a(n-36). - Wesley Ivan Hurt, May 28 2021

A123482 Coefficients of the series giving the best rational approximations to sqrt(11).

Original entry on oeis.org

60, 23940, 9528120, 3792167880, 1509273288180, 600686976527820, 239071907384784240, 95150018452167599760, 37869468272055319920300, 15071953222259565160679700, 5998599512991034878630600360, 2387427534217209622129818263640, 950190160018936438572789038328420
Offset: 1

Views

Author

Gene Ward Smith, Oct 02 2006

Keywords

Comments

The partial sums of the series 10/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(11), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [3;3,6,3], [3;3,6,3,6,3], [3;3,6,3,6,3,6,3] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-60*x/((x - 1)*(x^2 - 398*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    Vec(-60*x/((x-1)*(x^2-398*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 399*a(n+2) - 399*a(n+1) + a(n).
a(n) = -5/33 + (5/66 + 1/44*11^(1/2))*(199 + 60*11^(1/2))^n + (5/66 - 1/44*11^(1/2))*(199 - 60*11^(1/2))^n.
G.f.: -60*x / ((x-1)*(x^2-398*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014

A180029 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 6*x - 2*x^2).

Original entry on oeis.org

1, 8, 50, 316, 1996, 12608, 79640, 503056, 3177616, 20071808, 126786080, 800860096, 5058732736, 31954116608, 201842165120, 1274961223936, 8053451673856, 50870632491008, 321330698293760, 2029725454744576
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vector, with decimal values 255, 383, 447, 479, 503, 507, 509 and 510. The other squares lead for these vectors to A135030.

Programs

  • Magma
    I:=[1,8]; [n le 2 select I[n] else 6*Self(n-1)+2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
  • Maple
    with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [0,1,1,1,1,1,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{6,2},{1,8},50 ] (* Vincenzo Librandi, Nov 15 2011 *)

Formula

G.f.: (1+2*x)/(1 - 6*x - 2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with a(0) = 1 and a(1) = 8.
a(n) = ((5-4*A)*A^(-n-1) + (5-4*B)*B^(-n-1))/22 with A = (-3+sqrt(11))/2 and B = (-3-sqrt(11))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A016116(n+1)/(A041015(n-1)*sqrt(11) - A041014(n-1)) for n >= 1.
Showing 1-8 of 8 results.